Skip to main content

Physiological Function of Hypoxic Pulmonary Vasoconstriction

  • Chapter
Hypoxic Pulmonary Vasoconstriction

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

  • 129 Accesses

Summary

HPV clearly has a physiologic role in the fetus to divert blood flow from the lungs to the systemic circulation. Once out of the uterus, the human lung continues to display alveolar HPV. The usefulness of alveolar HPV to enhance gas exchange in normal people and patients with small airways dysfunction is based on limited studies but seems real. HPV, however, loses its effectiveness at preserving gas exchange in the presence of more diffuse hypoxia, as occurs in advanced chronic obstructive pulmonary disease or pulmonary fibrosis. Diffuse alveolar hypoxia may, however, contribute to the cor pulmonale seen in these diseases and to the pulmonary hypertension of altitude or hypoventilation. Since the strength of alveolar HPV acutely does not correlate with the magnitude of pulmonary hypertension in chronic diffuse hypoxia, hypoxia may induce pulmonary vascular remodeling by a direct effect on the vessel walls as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arborelius M Jr, Lundin G, Svanberg L, and Defares JG. Influence of unilateral hypoxia on blood flow through the lungs in man in lateral position. J. Appl. Physiol. 1960; 15:595–597.

    PubMed  Google Scholar 

  2. Bartsch P, Maggiorini M, Ritter M, Noti C, Vock P, and Oelz O. Prevention of high-altitude pulmonary edema by Nifedipine. N. Engl. J. Med. 1991; 325: 1284–1289.

    CAS  PubMed  Google Scholar 

  3. Benumof JL. Mechanism of decreased blood flow to atelectatic lung. J. Appl. Physiol. 1979;46: 1047–1048.

    CAS  PubMed  Google Scholar 

  4. Cassin S, Dawes GS, Mott JC, Ross BB, and Strang LB. The vascular resistance of the foetal and newly ventilated lung of the lamb. J. Physiol. 1963; 171: 61–79.

    Google Scholar 

  5. Custer J and Hales CA. Influence of alveolar oxygen on pulmonary vasoconstriction in newborn lambs versus sheep. Am. Rev. Respir. Dis. 1985; 132: 326–331.

    CAS  PubMed  Google Scholar 

  6. Custer JR and Hales CA. Chemical sympathectomy decreases alveolar hypoxic vasoconstriction in lambs but not in sheep. J. Appl. Physiol. 1986; 60: 32–37.

    CAS  PubMed  Google Scholar 

  7. Enson Y, Giuntini C, Lewis ML, Morris TQ, Ferrer MI, and Harvey RM. The influence of hydrogen ion concentration and hypoxia on the pulmonary circulation. J. Clin. Invest. 1964; 43: 1146–1161.

    CAS  PubMed  Google Scholar 

  8. Fishman AP, Himmelstein A, Fritts, Jr. HW, and Cournand A. Blood flow through each lung in man during unilateral hypoxia. J. Clin. Invest. 1955; 34: 637–646.

    CAS  PubMed  Google Scholar 

  9. Friedlander M, Sandler A, Kavanagh B, Winton T, and Benumof J. Is hypoxic pulmonary vasoconstriction important during single lung ventilation in the lateral decubitus position? Can. J. Anesth. 1994; 41: 26–30.

    CAS  PubMed  Google Scholar 

  10. Grant BJB, Davies EE, Jones HA, and Hughes JMB. Local regulation of pulmonary blood flow and ventilation-perfusion ratios in the coatimundi. J. Appl. Physiol. 1976; 40: 216–228.

    CAS  PubMed  Google Scholar 

  11. Groves BM, Reeves JT, Sutton JR, Wagner PD, Cymerman A, Malconian MK, Rock PB, Young PM, and Houston CS. Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. J. Appl. Physiol. 1987; 63: 521–530.

    CAS  PubMed  Google Scholar 

  12. Hales CA and Westphal D. Hypoxemia following the administration of sublingual nitroglycerin. Am. J. Med. 1978; 65: 911–918.

    Article  CAS  PubMed  Google Scholar 

  13. Hales CA, Ahluwalia B, and Kazemi H. Strength of pulmonary vascular response to regional alveolar hypoxia. J. Appl. Physiol. 1975; 38: 1083–1087.

    CAS  PubMed  Google Scholar 

  14. Hales CA, Gibbons R, Burnham C, and Kazemi K. Determinants of regional distribution of a bolus inhaled from residual volume. J. Appl. Physiol. 1976; 41: 400–408.

    CAS  PubMed  Google Scholar 

  15. Hampl V, Bibova J, Stranak Z, Wu X, Michelakis ED, Hashimoto K, and Archer SL. Hypoxic fetoplacental vasoconstriction in humans is mediated by potassium channel inhibition. Am. J. Physiol. Heart Circ. Physiol. 2002; 283: H2440–H2449.

    CAS  PubMed  Google Scholar 

  16. Heymann MA, Rudolph AM, Nies AS, and Melmon KL. Bradykinin production associated with oxygenation of the fetal lamb. Circ. Res. 1969; 25: 521–534.

    CAS  PubMed  Google Scholar 

  17. Hughs JMB and Morrell, NW, Pulmonary Circulation: From basic mechanisms to clinical practice. London: Imperial College Press, 2001.

    Google Scholar 

  18. LeBlanc P, Ruff F, and Milic-Emili J. Effects of age and body position on “airway closure” in man. J. Appl. Physiol. 1970; 28: 448–451.

    Google Scholar 

  19. Leffler CW, Hessler JR, and Green RS. The onset of breathing at birth stimulates pulmonary vascular prostacyclin synthesis. Pediatr. Res. 1984; 18: 938–942.

    CAS  PubMed  Google Scholar 

  20. Light RB, Mink SN, and Wood LD. Pathophysiology of gas exchange and pulmonary perfusion in pneumococcal lobar pneumonia in dogs. J. Appl. Physiol. 1981; 50: 524–530.

    CAS  PubMed  Google Scholar 

  21. Liu Q, Sham JSK, Shimoda LA, and Sylvester JT. Hypoxic constriction of porcine distal pulmonary arteries: endothelium and endothelin dependence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L856–L865.

    CAS  PubMed  Google Scholar 

  22. Madden JA. Focus on “Hypoxic constriction of porcine distal pulmonary arteries: endothelium and endothelin dependence”. Am. J. Physiol Lung Cell Mol Physiol. 2001; 280: L853–L855.

    CAS  PubMed  Google Scholar 

  23. Madden JA, Vadula MS, and Kurup VP. Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am. J. Physiol. 1992; 263: L384–L393.

    CAS  PubMed  Google Scholar 

  24. Mandegar M and Yuan JX-J. Role of K+ channels in pulmonary hypertension. Vasc. Pharmacol. 2002; 38: 25–33.

    Article  CAS  Google Scholar 

  25. Marshall BE and Marshall C. Continuity of response to hypoxic pulmonary vasoconstriction. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 1980; 49: 189–196.

    CAS  Google Scholar 

  26. Marshall C and Marshall B. Site and sensitivity for stimulation of hypoxic pulmonary vasoconstriction. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 1983; 55: 711–716.

    CAS  Google Scholar 

  27. McCormack DG, and Paterson NA. Loss of hypoxic pulmonary vasoconstriction in chronic pneumonia is not mediated by nitric oxide. Am. J. Physiol. 1993; 265: H1523–H1528.

    CAS  PubMed  Google Scholar 

  28. Miller FL, Chen L, Malmkvist G, Marshall C, and Marshall BE. Mechanical factors do not influence blood flow distribution in atelectasis. Anesthesiology. 1989; 70: 481–488.

    CAS  PubMed  Google Scholar 

  29. Miranda A, and Rotta A. Medidas del corazon en nativos de la altura. Ann. Facultad. Medicina 1944; 26: 49–58.

    Google Scholar 

  30. Mookherjee S, Keighley JFH, Warner RA, Bowser MA, and Obeid AI. Hemodynamic, ventilatory and blood gas changes during infusion of sodium nitroferricyanide (nitroprusside): Studies in patients with congestive heart failure. Chest 1977; 72: 273–278.

    CAS  PubMed  Google Scholar 

  31. Motley HL, Cournand A, Werko L, Himmelstein A, and Dresdale D. The influence of short periods of induced acute anoxia upon pulmonary artery pressures. Am. J. Physiol. 1947; 150: 315–320.

    Google Scholar 

  32. Murray TR, Chen L, Marshall BE, and Macarak EJ. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells. Am. J. Respir. Cell. Mol. Biol. 1990; 3: 457–465.

    CAS  PubMed  Google Scholar 

  33. Nagasaka Y, Bhattacharya J, Nanjo S, Cropper MA, and Staub NC. Micropuncture measurement of lung microvascular pressure profile during hypoxia in cats. Circ. Res. 1984; 54: 90–95.

    CAS  PubMed  Google Scholar 

  34. Rotta A. Physiologic condition of the heart in the natives of high altitudes. Am. Heart J. 1947; 33: 669–676.

    Article  Google Scholar 

  35. Rudolph AM. Fetal and neonatal pulmonary circulation. Annu. Rev. Physiol. 1979; 41: 383–395.

    Article  CAS  PubMed  Google Scholar 

  36. Rudolph AM and Heymann MA. Circulatory changes during growth in the fetal lamb. Circ. Res. 1970; 26: 289–299.

    CAS  PubMed  Google Scholar 

  37. Rudolph AM and Heymann MA. The circulation of the fetus in utero. Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ. Res. 1967; 21: 163–184.

    CAS  PubMed  Google Scholar 

  38. Sada K, Shirai M, and Ninomiya I. X-ray TV system for measuring microcirculation in small pulmonary vessels. J. Appl. Physiol. 1985; 59: 1013–1018.

    CAS  PubMed  Google Scholar 

  39. Shirai M, Sada K, and Ninomiya L. Effects of regional alveolar hypoxia and hypercapnia on small pulmonary vessels in cats. J. Appl. Physiol. 1986; 61: 440–448.

    CAS  PubMed  Google Scholar 

  40. Sostman HD, Neumann RD, Gottschalk A, and Greenspan RH. Perfusion of nonventilated lung: Failure of hypoxic vasoconstriction? AJR. 1983; 141: 151–156.

    CAS  PubMed  Google Scholar 

  41. Teitel DF, Iwamoto HS, and Rudolph AM. Effects of birth-related events on central blood flow patterns. Pediatr. Res. 1987; 22: 557–566.

    CAS  PubMed  Google Scholar 

  42. Thomas HM III and Garrett RC. Strength of hypoxic vasoconstriction determines shunt fraction in dogs with atelectasis. J. Appl. Physiol. 1982; 53: 44–51.

    PubMed  Google Scholar 

  43. Thompson BT, Hassoun PM, Kradin RL, and Hales CA. Acute and chronic hypoxic pulmonary hypertension in guinea pigs. J. Appl. Physiol. 1989; 66: 920–928.

    CAS  PubMed  Google Scholar 

  44. Tucker A and Reeves JT. Nonsustained pulmonary vasoconstriction during acute hypoxia in anesthetized dogs. Am. J. Physiol. 1975; 228: 756–761.

    CAS  PubMed  Google Scholar 

  45. Vejlstrup NG, O’Neill M, Nagyova B, and Dorrington KL. Time course of hypoxic pulmonary vasoconstriction: a rabbit model of regional hypoxia. Am. J. Respir. Crit. Care Med. 1997; 155: 216–221.

    CAS  PubMed  Google Scholar 

  46. Von Euler US and Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol. Scand. 1946; 12: 301–332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hales, C.A. (2004). Physiological Function of Hypoxic Pulmonary Vasoconstriction. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_1

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics