Skip to main content

Towards A Theory of Organisms and Evolving Automata

Open Problems and Ways to Explore

  • Chapter
Frontiers of Evolutionary Computation

Part of the book series: Genetic Algorithms and Evolutionary Computation ((GENA,volume 11))

Abstract

We present 14 challenging problems of evolutionary computation, most of them derived from unfinished research work of outstanding scientists such as Charles Darwin, John von Neumann, Anatol Rapaport, Claude Shannon, and Alan Turing. The problems have one common theme: Can we develop a unifying theory or computational model of organisms (natural and artificial) which combines the properties structure, function, development, and evolution? There exist theories for each property separately as well as for some combinations of two. But the combination of all four properties seems necessary for understanding living organisms or evolving automata. We discuss promising approaches which aim in this research direction. We propose stochastic methods as a foundation for a unifying theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burns, A. W. (1970). Essays on Cellular Automata. University of Illinois Press, Urbana.

    Google Scholar 

  • Cherry, C. (1961). Information Theory: Fourth London Symposium. Butterworth, London.

    Google Scholar 

  • Cover, T. M. and Thomas, J. A. (1989). Elements of Information Theory. Wiley, New York.

    Google Scholar 

  • Darwin, C. (1859). The Origins of Species by Means of Natural Selection. Penguin Classics, London.

    Google Scholar 

  • Dawkins, R. (1989). The Selfish Gene. Oxford University Press, Oxford. (Second Edition).

    Google Scholar 

  • Griffiths, P. E. (2002). The philosophy of molecular and developmental biology. In Blackwell Guide to Philosophy of Science. Blackwell Publishers.

    Google Scholar 

  • Holland, J. H. (1970a). Iterative circuit computers. In Burns, A. W., editor, Essays on Cellular Automata, pages 277–296. University of Illinois Press, Urbana.

    Google Scholar 

  • Holland, J. H. (1970b). Outline for a logical theory of adaptive systems. In Burns, A. W., editor, Essays on Cellular Automata, pages 296–319. University of Illinois Press, Urbana.

    Google Scholar 

  • Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. Siam Journal on Computing, 2(2): 88–105.

    Article  MATH  MathSciNet  Google Scholar 

  • Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor, MI. Second edition. Cambridge, MA. The MIT Press 1992.

    Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Review, 6:620–643.

    MathSciNet  Google Scholar 

  • Lauritzen, S. L. (1996). Graphical Models. Clarendon Press, Oxford.

    Google Scholar 

  • Lenat, D. B. (1995). Cyc: A large-scale investment in knowledge infrastructure. Comm. of the ACM, 38:924–948.

    Google Scholar 

  • McCarthy, J. (1959). Programs with common sense. In Mechanisation of Thought Processes, pages 75–84. Her Majesty’s Stationery Office, London.

    Google Scholar 

  • McMullin, B. (2001). John von Neumann and the evolutionary growth of complexity: Looking backward, looking forward... Artificial Life, 6:347–361.

    Google Scholar 

  • Minsky, M. (1961). Steps toward artificial intelligence. Proc. of IRE, 49:8–30.

    MathSciNet  Google Scholar 

  • Mühlenbein, H. (1991a). Darwin’s continent cycle theory and its simulation by the Prisoner’s Dilemma. Complex Systems, 5:459–478.

    MATH  MathSciNet  Google Scholar 

  • Mühlenbein, H. (1991b). Evolution in time and space — the parallel genetic algorithm. In Rawlins, G., editor, Foundations of Genetic Algorithms, pages 316–337. Morgan Kaufmann, San Mateo.

    Google Scholar 

  • Mühlenbein, H. (1996). Algorithms, data and hypothese: Learning in open worlds. In Mahler, G., May, V., and Schreiber, M., editors, Molecular Electronics: Properties, Dynamics, and Applications, pages 5–22. Marcel Dekker, New York.

    Google Scholar 

  • Mühlenbein, H. and Höns, R. (2002). Stochastic analysis of cellular automata with application to the voter model. Advances in Complex Systems, 5((2–3)):301–337.

    Google Scholar 

  • Mühlenbein, H. and Mahnig, T. (1999). FDA — a scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary Computation, 7(4):353–376.

    Google Scholar 

  • Mühlenbein, H. and Mahnig, T. (2000). Evolutionary algorithms: From recombination to search distributions. In Kallel, L., Naudts, B., and Rogers, A., editors, Theoretical Aspects of Evolutionary Computing, Natural Computing, pages 137–176. Springer Verlag, Berlin.

    Google Scholar 

  • Mühlenbein, H. and Mahnig, T. (2002a). Evolutionary optimization and the estimation of search distributions with applications to graph bipartitioning. Journal of Approximate Reasoning, 31(3):157–192.

    MathSciNet  Google Scholar 

  • Mühlenbein, H. and Mahnig, T. (2002b). Mathematical analysis of evolutionary algorithms. In Ribeiro, C. C. and Hansen, P., editors, Essays and Surveys in Metaheuristics, Operations Research/Computer Science Interface, pages 525–556. Kluwer Academic Publisher, Norwell.

    Google Scholar 

  • Mühlenbein, H. and Mahnig, T. (2003). Evolutionary algorithms and the Boltzmann distribution. In De Jong, K., Poli, R., and Rowe, J., editors, Foundations of Genetic Algorithms 7. Morgan Kaufmann Publishers, San Francisco.

    Google Scholar 

  • Mühlenbein, H., Mahnig, T., and Ochoa, A. R. (1999). Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics, 5(2):215–247.

    Google Scholar 

  • Opper, M. and Saad, D. (editors) (2001). Advanced Mean Field Methods. MIT Press, Cambridge.

    Google Scholar 

  • Oyama, S. (2000). Evolutions’s Eye. Duke University Press, Durham.

    Google Scholar 

  • Parisi, D. and Ugolini, M. (2002). Living in enclaves. Complexity, 7:21–27.

    Google Scholar 

  • Rapaport, A. (1970). Modern systems theory — an outlook for coping with change. General Systems, XV:15–25.

    Google Scholar 

  • Shannon, C. E. (1953). Computers and automata. Proc. of IRE, 41:1234–1241.

    MathSciNet  Google Scholar 

  • Smith, J. M. and Szathmary, E. (1995). The Major Transitions in Evolution. W.H. Freeman, Oxford.

    Google Scholar 

  • Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59:433–460.

    MathSciNet  Google Scholar 

  • Uttley, A. M. (1959). Conditional probability computing in a nervous system. In Mechanisation of Thought Processes, pages 19–152. Her Majesty’s Stationery Office, London.

    Google Scholar 

  • von Neumann, J. (1954). The general and logical theory of automata. In The world of mathematics, pages 2070–2101. Simon and Schuster, New York.

    Google Scholar 

  • von Neumann, J. (1956). Probabilistic logics and the synthesis of reliable organs from unreliable components. Annals of Mathematics Studies, 34:43–99.

    Google Scholar 

  • Vose, M. D. (1999). The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge.

    Google Scholar 

  • Whitehead, A. N. (1948). Science and the Modern World. Pelican Books, New York.

    Google Scholar 

  • Wolfram, S. (1994). Cellular Automata and Complexity. Addison-Wesley, Reading.

    Google Scholar 

  • Wright, S. (1937). The distribution of gene frequencies in populations. Proc. Nat. Acad. Sci., 24:253–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mühlenbein, H. (2004). Towards A Theory of Organisms and Evolving Automata. In: Menon, A. (eds) Frontiers of Evolutionary Computation. Genetic Algorithms and Evolutionary Computation, vol 11. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7782-3_1

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7782-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7524-7

  • Online ISBN: 978-1-4020-7782-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics