Skip to main content

Transforming 3D Mesh Surfaces into Images by Parameterization

  • Chapter
Integrated Image and Graphics Technologies

Part of the book series: The International Series in Engineering and Computer Science ((SECS,volume 762))

  • 254 Accesses

Abstract

This chapter addresses the problem of mesh parameterization for transforming 3D mesh surfaces into images. We begin with a survey of the algorithms for parameterizing a chart, a simply connected mesh isomorphic to a topological disk, into a 2D domain and follow this with a review of several classic and popular parameterization algorithms based on solving the linear or non-linear systems, for instance, barycentric mapping, conformal mapping, harmonic mapping, and geometrical stretch minimizing. We then introduce state-of-the-art methods for opening an arbitrary mesh into a topological disk by cutting along an appropriate set of edges or for partitioning it into several charts. The chapter ends with a discussion of some related applications, such as texture mapping, remeshing, and mesh compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Alliez, M. Meyer, and M. Desbrun. “Interactive geomety remeshing”. In Proceedings of ACM SIGGRAPH 2002, Addison Wesley, pages 347–354, 2002.

    Google Scholar 

  2. Y. Azar and L. Epstein. “On 2d packing”. Journal of Algorithms, vol. 25, pp. 290–310, 1997.

    Article  MathSciNet  Google Scholar 

  3. C. Bennis, J.-M. Vézien, G. Iglésias, and A. Gagalowicz. “Piecewise surface flattening for non-distorted texture mapping”. Computer Graphics (ACM SIGGRAPH 91), vol.25, no. 4, pp. 237–246, July, 1991.

    Google Scholar 

  4. J. Blinn. “Simulation of wrinkled surfaces”. Computer Graphics (ACM SIGGRAPH 78), vol. 12, pp. 286–292, 1978.

    Google Scholar 

  5. M. Botsch and L. Kobbelt. “Resampling feature and blend regions in polygonal meshes for surface anti-aliasing”. In Proceedings of Eurographics 2001, pp. 402–410, September, 2001.

    Google Scholar 

  6. M. Botsch, C. Rossl, and L. Kobbelt. “Feature sensitive sampling for interactive remeshing”. In Proceedings of Vision, Modeling and Visualization 2000, pp. 129–136, 2000.

    Google Scholar 

  7. R.L. Cook. “Shade trees”. Computer Graphics (ACM SIGGRAPH 84), vol. 18, pp. 223–231, July, 1984.

    Google Scholar 

  8. J. Cohen, M. Olano, and D. Manocha. “Appearance-preserving simplification”. In Proceedings of ACM SIGGRAPH 1998, pp. 115–122, 1998.

    Google Scholar 

  9. G. Davis. “Wavelet image compression construction kit”. http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html.

  10. M. Desbrun, M. Meyer, and P. Alliez. “Intrinsic parametrizations of surface meshes”. In Proceedings of Eurographics 2002.

    Google Scholar 

  11. T.K. Dey and H. Schipper. “A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection”. Discrete and Computational Geometry 14, pp. 93–110, 1995.

    MathSciNet  Google Scholar 

  12. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery and W. Stuetzle. “Multiresolution analysis of arbitrary meshes”. In Proceedings of ACM SIGGRAPH 95, Addison Wesley, August, 1995.

    Google Scholar 

  13. J. Erickson and S. Har-Peled. “Cutting a surface into a disk”. In Proceedings of ACM SoCG 2002.

    Google Scholar 

  14. M.S. Floater. “Parametrization and smooth approximation of surface triangulations”. Computer Aided Geometric Design 14, pp. 231–250, 1997.

    MATH  MathSciNet  Google Scholar 

  15. A. Fournier. “Normal distribution functions and multiple surfaces”. Graphics Interface ‘92 Workshop on Local Illumination, pp. 45–52, 1992.

    Google Scholar 

  16. M. Garland and P. Heckbert. “Simplifying surfaces with color and texture using quadric error metrics”. In Proceedings of IEEE Visualization 98, pp. 263–269, 1998.

    Google Scholar 

  17. M. Garland, A. Willmott, and P. Heckbert. “Hierarchical face clustering on polygonal surfaces”. In Proceedings of ACM Symposium on Interactive 3D Graphics 2001.

    Google Scholar 

  18. Gene Golub and Charles Van Loan. Matrix Computations. John Hopkins University Press, 2nd edition, 1989.

    Google Scholar 

  19. X. Gu, S. Gortler, and H. Hoppe. “Geometry images”. In Proceedings of ACM SIGGRAPH 2002.

    Google Scholar 

  20. X. Gu and S.T. Yau. “Computing conformal structure of surfaces”. In Communication of Information and Systems, IP Press, 2002.

    Google Scholar 

  21. S. Gumhold and W. Straßer. “Real time compression of triangle mesh connectivity. In Proceedings of ACM SIGGRAPH 98, pp. 133–140, 1998.

    Google Scholar 

  22. I. Guskov, W. Sweldens, and P. Schroder. “Multiresolution signal processing for meshes”. In Proceedings of ACM SIGGRAPH 99, pp. 325–334, 1999.

    Google Scholar 

  23. I. Guskov, K. Vidimce, W. Sweldens, and P. Schroder. “Normal meshes”. In Proceedings of ACM SIGGRAPH 2000, pp. 95–102, 2000.

    Google Scholar 

  24. S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle. “Conformal surface parameterization for texture mapping”. IEEE Transactions on Visualization and Computer Graphics, vol. 6, no. 2, pp. 181–189, 2000.

    Article  Google Scholar 

  25. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. “Mesh optimization”. Computer Graphics, vol. 27 (ACM SIGGRAPH 93), pp. 19–26, 1993.

    Google Scholar 

  26. K. Hormann and G. Greiner. MIPS: “An efficient global parametrization method”. In Curve and Surface Design: Saint-Malo 1999 (2000), P.-J. Laurent, P. Sablonnière, and L. L. Schumaker, Eds., Vanderbilt University Press, pp. 153–162.

    Google Scholar 

  27. K. Hormann, U. Labsik, and G. Greiner. “Remeshing triangulated surfaces with optimal parameterizations”. Computer-Aided Design, vol. 33, pp. 779–788, 2001.

    Article  Google Scholar 

  28. A. Kalvin and R. Taylor. “Superfaces: polygonal mesh simplification with bounded error”. IEEE Computer Graphics and Application, vol. 16, pp. 64–77, 1996.

    Google Scholar 

  29. J.R. Kent, W.E. Carlson, and R.E. Parent. “Shape transformation for polyhedral objects”. In Proceedings of ACM SIGGRAPH 92, pp. 47–54, July 1992.

    Google Scholar 

  30. V. Krishnamurthy and M. Levoy. “Fitting smooth surfaces to dense polygon meshes”. In Proceedings of ACM SIGGRAPH 96, pp. 313–324, ACM Press, 1996.

    Google Scholar 

  31. F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust. “Computing a canonical polygonal schema of an orientable triangulated surface”. In Proceedings of ACM SCG 2001, pp. 80–89, 2001.

    Google Scholar 

  32. A. Lee, H. Moreton, and H. Hoppe. “Displaced subdivision surfaces”. In Proceedings of SIGGRAPH 2000.

    Google Scholar 

  33. A. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. “MAPS: multiresolution adaptive parameterization of surfaces”. In Proceedings of ACM SIGGRAPH 98, pp. 95–104, Addison Wesley, 1998.

    Google Scholar 

  34. B. Levy. “Constrained texture mapping for polygonal meshes”. In Proceedings of ACM SIGGRAPH 2001, pp. 417–424, August 2001.

    Google Scholar 

  35. B. Levy and J.L. Mallet. “Non-distorted texture mapping for sheared triangulated meshes”. In Proceedings of ACM SIGGRAPH 98, Addison Wesley, 1998.

    Google Scholar 

  36. B. Levy, S. Petitjean, N. Ray, and J.L. Maillot. “Least squares conformal maps for automatic texture atlas generation”. In Proceedings of ACM SIGGRAPH 2002, Addison Wesley, 2002.

    Google Scholar 

  37. P. Lindstrom and G. Turk. “Fast and memory efficient polygonal simplification”. In Proceedings of IEEE Visualization 98, pp. 279–286, 1998.

    Google Scholar 

  38. M. Lounsbery, T. DeRose, and J. Warren. “Multiresolution analysis for surfaces of arbitrary topological type”. ACM Transactions on Graphics, vol. 16, no. 1, pp. 34–73, January 1997.

    Article  Google Scholar 

  39. J.L. Maillot, H. Yahia, and A. Verroust. “Interactive texture mapping”. In Proceedings of ACM SIGGRAPH 93, pp. 27–34, 1993.

    Google Scholar 

  40. A.P. Mangan and R.T. Whitaker. “Partitioning 3D surface meshes using watershed segmentation”. IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 4, pp. 308–321, 1999.

    Google Scholar 

  41. J. Munkres. Topology. Prentice Hall, 2000.

    Google Scholar 

  42. H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. “Rectangle-packing-based module placement”. IEEE ICCAD 1995, pp. 472–479, 1995.

    Google Scholar 

  43. M. Olano and A. Lastra. “A shading language on graphics hardware: the pixelflow shading system”. In Proceedings of ACM SIGGRAPH 98, 1998.

    Google Scholar 

  44. H. Pedersen. “Decorating implicit surfaces”. In Proceedings of ACM SIGGRAPH 95, pp. 291–300, ACM Press, 1995.

    Google Scholar 

  45. M. Peercy, J. Airey, and B. Cabral. “Efficient bump mapping hardware”. In Proceedings of ACM SIGGRAPH 97, pp. 303–306, 1997.

    Google Scholar 

  46. U. Pinkall and K. Polthier. “Computing discrete minimal surfaces”. Experimental Mathematics, vol. 2, no.1, pp. 15–36, 1993.

    MathSciNet  Google Scholar 

  47. D. Piponi and G. Borshukov. “Seamless texture mapping of subdivision surfaces by model pelting and texture blending”. In Proceedings of ACM SIGGRAPH 2000, pp. 471–478. ACM Press, 2000.

    Google Scholar 

  48. E. Praun, A. Finkelstein, and H. Hoppe. “Lapped Textures”. In Proceedings of ACM SIGGRAPH 2000, pp. 465–470, July 2000.

    Google Scholar 

  49. P. Sander, S. Gortler, J. Snyder, and H. Hoppe. “Signal specialized parametrization”. In Proceedings of Eurographics Workshop on Rendering 2002, 2002.

    Google Scholar 

  50. P. Sander, J. Snyder, S. Gortler, and H. Hoppe. “Texture mapping progressive meshes”. In Proceedings of SIGGRAPH 2001, pp. 409–416, 2001.

    Google Scholar 

  51. A. Sheffer and E. Sturler. “Parameterization of faceted surfaces for meshing using angle-based flattening”. Engineering with Computers, vol. 17, no.3, pp. 326–337, 2001.

    Google Scholar 

  52. G. Taubin and J. Rossignac. “Geometric compression through topological surgery”. ACM Transactions on Graphics, vol. 17, no. 2, pp. 84–115, 1998.

    Article  Google Scholar 

  53. W.T. Tutte. “How to draw a graph”. In Proc. London Math Soc, vol. 13, pp. 743–768, 1963.

    MATH  MathSciNet  Google Scholar 

  54. Van der Vorst, H.A. “Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems”. SIAMsci, vol. 13, pp. 631–644, 1992.

    MATH  Google Scholar 

  55. C.L. Wang, S.F. Smith, and M.F. Yuen. “Surface flattening based on energy model”. Computer-Aided Design, vol. 34, no. 11, pp. 823–833, 2002.

    Article  Google Scholar 

  56. W. Welch and A. Witkin. “Free-form shape design using triangulated surfaces”. In Proceedings of ACM SIGGRAPH 94, pp. 247–256, 1994.

    Google Scholar 

  57. L. Williams. “Pyramidal parametrics”. In Proceedings of ACM SIGGRAPH 83, pp. 1–11, 1983. pp 30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Yan, J., Shi, P., Zhang, D. (2004). Transforming 3D Mesh Surfaces into Images by Parameterization. In: Zhang, D.D., Kamel, M., Baciu, G. (eds) Integrated Image and Graphics Technologies. The International Series in Engineering and Computer Science, vol 762. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7775-0_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7775-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7774-6

  • Online ISBN: 978-1-4020-7775-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics