Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2248 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Fafard, R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff, Phys. Rev. B 52, 5752 (1995)

    Google Scholar 

  2. R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff Ibidem, Phys. Rev. B 50, 8086 (1994)

    Google Scholar 

  3. R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff Ibidem, Superlattices and Microstructures, 16, 303 (1994)

    CAS  Google Scholar 

  4. S. Fafard, D. Leonard, J. M. Merz, and P. M. Petroff, Appl. Phys. Lett. 65, 1388 (1994)

    Article  CAS  Google Scholar 

  5. S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, Surface Science 361, 778, (1996).

    Article  Google Scholar 

  6. K. Mukai, N. Ohtsuka, H. Shoji, M. Sugawara, Appl. Phys. Lett. 68, 3013 (1996).

    Article  CAS  Google Scholar 

  7. R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, Z. Liliental-Weber, Phys. Rev. B 58, R4262 (1998).

    Google Scholar 

  8. S. Raymond, P. Hawrylak, C. Gould, S. Fafard, A. Sachrajda, M. Potemski, A. Wojs, S. Charbonneau, D. Leonard, P. M. Petroff and J. L. Merz, Solid State Communications 101, 883 (1997).

    Article  CAS  Google Scholar 

  9. G. Park, O. B. Shchekin, D. L. Huffaker, D. G. Deppe, Appl. Phys. Lett. 73, 3351 (1998).

    CAS  Google Scholar 

  10. Y. Sugiyama, Y. Nakata, T. Futatsugi, M. Sugawara, Y. Awano, N. Yokoyama, Jpn. J. Appl. Phys. 36, LI58 (1997).

    Google Scholar 

  11. M. Grundmann, N. N. Ledentsov, O. Stier, D. Bimberg, V. M. Ustinov, P. S. Kopev, and Zh. I. Alferov, Appl. Phys. Lett. 68, 979 (1996).

    Article  CAS  Google Scholar 

  12. S. Raymond, X. Guo, J. L. Merz, and S. Fafard, Phys. Rev. B 59, 7624 (1999).

    Google Scholar 

  13. H. Lipsanen, M. Sopanen, J. Ahopelto, Phys. Rev. B 51, 13868 (1995).

    Google Scholar 

  14. S. Fafard, Z. R. Wasilewski, C. Ní. Allen, D. Picard, M. Spanner, J. P. McCaffrey, and P. G. Piva, Phys. Rev. B 59, 15368 (1999).

    Google Scholar 

  15. S. Fafard, Z. R. Wasilewski, C. Nì Allen, D. Picard, P. G. Piva, and J. P. McCaffrey, Superlat. and Microst. 25, 87 (1999).

    CAS  Google Scholar 

  16. S. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, Y. Feng, and S. Charbonneau, Science 274, 1350 (1996)

    Article  CAS  Google Scholar 

  17. S. Fafard, Z. R. Wasilewski, C. Ní. Allen, K. Hinzer, J. P. McCaffrey, and Y. Feng, Appl. Phys. Lett. 75, 986 (1999).

    CAS  Google Scholar 

  18. S. Fafard, Photonics Spectra 31, 160 (1997).

    Google Scholar 

  19. R. Mirin, A. Gossard, and J. Bowers, Electronics Lett. 32, 1732 (1996).

    Article  CAS  Google Scholar 

  20. Q. Xie, A. Kalburge, P. Chen, and A. Madhukar, IEEE Photonics Technology Letters 8, 965 (1996).

    Google Scholar 

  21. H. Shoji, K. Mukai, N. Ohtsuka, M. Sugawara et al., IEEE Photonics Technology Letters 12, 1385 (1995).

    Google Scholar 

  22. H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, Jap. J. Appl. Phys. II, Lett. 35, L903 (1996); Ibidem, Electonics Lett. 32, 2023 (1996).

    CAS  Google Scholar 

  23. H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, Appl. Phys. Lett. 69, 3140 (1996)

    Article  CAS  Google Scholar 

  24. K. Kamath, P. Bhattacharya, T. Sosnowski, T. Norris, and J. Phillips, Electronics Lett. 32, 1374 (1996).

    Article  CAS  Google Scholar 

  25. D. G. Deppe and H. Huang, Appl. Phys. Lett. 75, 3455 (1999).

    Article  CAS  Google Scholar 

  26. G. Park, O. B. Shchekin, S. Csutak, D. Huffaker, and D. G. Deppe, Appl. Phys. Lett. 75, 3267 (1999).

    CAS  Google Scholar 

  27. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Zh. I. Alferov, and D. Bimberg, Semicond. 32, 343 (1998).

    Google Scholar 

  28. K. Hinzer, J. Lapointe, Y. Feng, A. Delage, and S. Fafard, A. J. SpringThorpe and E. M. Griswold, J. Appl. Phys. 87, 1496 (2000).

    Article  CAS  Google Scholar 

  29. S. Fafard, K. Hinzer, A. J. SpringThorpe, Y. Feng, J. McCaffrey, S. Charbonneau, and E. M. Griswold, Material Science and Engineering 51, 114 (1998).

    Google Scholar 

  30. S. Fafard, J. McCaffrey, Y. Feng, C. Ni Allen, H. Marchand, L. Isnard, P. Desjardins, S. Guillon, and R. A. Masut, Proc. SPIE 3491, 272 (1998).

    Google Scholar 

  31. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, Phys. Rev. B 61, 7595 (2000).

    Google Scholar 

  32. Z. R. Wasilewski, S. Fafard, J. P. McCaffrey, and J. Crystal Gr. 201, 1131 (1999).

    Google Scholar 

  33. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbars, and P. M. Petroff, Appl. Phys. Lett. 63, 3203 (1993).

    Article  CAS  Google Scholar 

  34. D. Leonard, S. Fafard, K. Pond, Y. H. Zhang, J. M. Merz, and P. M. Petroff, J. Vac. Sci. Technol. B 12, 2516 (1994).

    Google Scholar 

  35. D. Leonard, M. Krishnamurthy, S. Fafard, J. M. Merz, and P. M. Petroff, J. Vac. Sci. Technol. B 12, 1063 (1994).

    Google Scholar 

  36. J. P. McCaffrey, M. D. Robertson, Z. R. Wasilewski, E. M. Griswold, L. D. Madsen, and S. Fafard, Determination of the size, shape, and composition of indium-flushed self-assembled quantum dots by transmission electron microscopy, J. Appl. Phys. 88, 2272 (2000).

    Article  CAS  Google Scholar 

  37. J. M. Garcia, T. Mankad, P. O. Holtz, P. J. Wellman, and P. M. Petroff, Appl. Phys. Lett. 72, 3172 (1998).

    Article  CAS  Google Scholar 

  38. G. D. Lian, J. Yuan, L. M. Brown, G. H. Kim, and D. A. Ritchie, Appl. Phys. Lett. 73, 49 (1998).

    Article  CAS  Google Scholar 

  39. H. Saito, K. Nishi, and S. Sugou, Appl. Phys. Lett. 73, 2742 (1998); ibidem, vol 74, 1224 (1999).

    CAS  Google Scholar 

  40. J. P. McCaffrey, M. D. Robertson, P. J. Poole, B. J. Riel, and S. Fafard, “Interpretation and Modelling of Buried InAs Quantum Dots on GaAs and InP Substrates,” J. Appl. Phys. 90, 1784 (2001).

    Article  CAS  Google Scholar 

  41. J. P. McCaffrey, M. D. Robertson, Z. R. Wasilewski, S. Fafard, and L. D. Madsen. Inst. Phys. Conf. Ser. 164, 107 (1999).

    CAS  Google Scholar 

  42. X. Z. Liao, J. Zou, D. J. H. Cockayne, R. Leon, and C. Lobo, Phys. Rev. Lett. 82, 5148 (1999).

    Article  CAS  Google Scholar 

  43. D. M. Bruls, J. W. A. M. Vugs, P. M. Koenraad, H. W. M. Salemink, J. H. Wolter, M. Hopkinson, M. S. Skolnick, and G. S. P. A. Fei-Long, Determination of the shape and indium distribution of low-growth-rate InAs quantum dots by cross-sectional scanning tunneling microscopy, Appl. Phys. Lett. 81, 1708 (2002).

    Article  CAS  Google Scholar 

  44. U. Hakanson, M. K. Johansson, J. Persson, J. Johansson, M. E. Pistol, L. Montelius, and L. Samuelson, Single InP/GaInP quantum dots studied by scanning tunneling microscopy and scanning tunneling microscopy induced luminescence, Appl. Phys. Lett. 80, 494 (2002).

    CAS  Google Scholar 

  45. T. Yamauchi, Y. Ohyama, Y. Matsuba, M. Tabuchi, and A. Nakamura, Observation of quantum size and alloying effects of single InGaAs quantum dots on GaAs(001) by scanning tunneling spectroscopy, Appl. Phys. Lett. 79, 2465 (2001).

    Article  CAS  Google Scholar 

  46. P. Ballet, J. B. Smathers, H. Yang, C. L. Workman, and G. J. Salamo, Scanning tunneling microscopy investigation of truncated InP/GainP 2 self-assembled islands, Appl. Phys. Lett. 77, 3406 (2000).

    Article  CAS  Google Scholar 

  47. T. K. Johal, R. Rinaldi, A. Passaseo, R. Cingolani, A. Vasanelli, R. Ferreira, and G. Bastard, Imaging of the electronic states of self-assembled InxGa1x As quantum dots by scanning tunneling spectroscopy, Phys. Rev. B 66, 075336 (2002).

    Google Scholar 

  48. K. Hinzer, M. Bayer, J. P. McCaffrey, P. Hawrylak, M. Korkusinski, O. Stern, Z. R. Wasilewski, S. Fafard, and A. Forchel, “Optical Spectroscopy of Electronic States in a Single Pair of Vertically Coupled Self-Assembled Quantum Dots”, Physica Status Solidi B 224, 385 (2001).

    Google Scholar 

  49. S. Fafard, M. Spanner, J. P. McCaffrey, and Z. R. Wasilewski, Appl. Phys. Lett. 76, 2268 (2000).

    CAS  Google Scholar 

  50. A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, Phys. Rev. B 54, 5604, (1996); A. Wojs, P. Hawrylak, Solid State Comm. 100, 487 (1996).

    Google Scholar 

  51. P. Hawrylak, Phys. Rev. B 60, 5597 (1999); A. Wojs, P. Hawrylak, S. Fafard, L. Jacak, Physica E 2, 603 (1998).

    Google Scholar 

  52. S. Fafard, H. C. Liu, Z. R. Wasilewski, J. McCaffrey, M. Spanner, S. Raymond, C. Ní. Allen, K. Hinzer, J. Lapointe, C. Struby, M. Gao, P. Hawrylak, C. Gould, A. Sachrajda, and P. Zawadzki, Quantum dots devices, SPIE 4078, 100 (2000).

    CAS  Google Scholar 

  53. M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, Hidden symmetries in the energy levels of excitonic artificial atoms, Nature 405, 923 (2000).

    Article  CAS  Google Scholar 

  54. R. Leon, C. Lobo, A. Clark, R. Bozek, A. Wysmolek, A. Kurpiewski, and M. Kaminska, J. Appl. Phys. 84, 248 (1998).

    Article  CAS  Google Scholar 

  55. R. Leon and S. Fafard, Phys. Rev. B 58, R1726, (1998).

    Google Scholar 

  56. S. Fafard, Z. R. Wasilewski, and M. Spanner, Appl. Phys. Lett. 75, 1866 (1999).

    CAS  Google Scholar 

  57. B. J. Riel, K. Hinzer, S. Moisa, J. Fraser, P. Finnie, P. Piercy, S. Fafard, Z. R. Wasilewski, and J. Cryst. Growth. 236, 145 (2002).

    CAS  Google Scholar 

  58. G. Wang, S. Fafard, D. Leonard, J. E. Bowers, J. M. Merz, and P. M. Petroff, Appl. Phys. Lett. 64, 2815 (1994).

    CAS  Google Scholar 

  59. S. Raymond, S. Fafard, S. Charbonneau, R. Leon, D. Leonard, P. M. Petroff, and J. L. Merz, Phys. Rev. B 52, 17238 (1995); J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, R. Leon, J. Vac. Sc. Technol. B 16, 578 (1998).

    Google Scholar 

  60. S. Raymond, S. Fafard, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and J. L. Merz, Phys. Rev. B 54, 11548 (1996).

    Google Scholar 

  61. D. Morris, N. Perret, and S. Fafard, Appl. Phys. Lett. 75, 3593 (1999).

    Article  CAS  Google Scholar 

  62. H. Benisty, C. M. Sotomayor-Torres, and C. Weisbuch, Phys. Rev. B 44, 10945 (1991).

    Google Scholar 

  63. A. V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pikuhn, Appl. Phys. Lett. 72, 58 (1998).

    Article  CAS  Google Scholar 

  64. Al. L. Efros, V. A. Kharchenko, and M. Rosen, Solid State Commun. 93, 281 (1995).

    Article  CAS  Google Scholar 

  65. S. Raymond, K. Hinzer, S. Fafard, and J. L. Merz, Phys. Rev. B 61, 15 Jun. (2000).

    Google Scholar 

  66. T. Inoshita and H. Sakaki, Phys. Rev. B 46, 7260 (1992)

    Google Scholar 

  67. D. Morris, N. Perret, D. Riabinina, J. Beerens, V. Aimez, J. Beauvais, and S. Fafard, Dynamics of Photo-Excited Carriers in Self-Assembled Quantum Dots, SPIE proceedings Photonics North 2002.

    Google Scholar 

  68. R. Leon, P. M. Petroff, D. Leonard, and S. Fafard, Spatially Resolved Visible Luminescence of Self-Assembled Quantum Dots, Science 267, 1966 (1995).

    CAS  Google Scholar 

  69. M. Bayer, A. Forchel, P. Hawrylak, S. Fafard, and G. Narvaez, Excitonic states in In(Ga)As self-assembled quantum dots, Physica Stat. Sol. B 224, 331 (2001).

    Google Scholar 

  70. K. Hinzer, P. Hawrylak, M. Korkusinski, S. Fafard, M. Bayer, O. Stern, A. Gorbunov, A. Forchel, “Optical spectroscopy of a single AlInAs/AlGaAs quantum dot”, Phys. Rev. B 63, 75314 (2001).

    Google Scholar 

  71. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, K. Klopf, and F. Schäfer, Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots, Phys. Rev. B 65, 195315-1 (2002); For further references on single quantum dot spectroscopy, see also Ref. 1 to Ref. 50 of this reference.

    Google Scholar 

  72. S. Fafard and C. Ní. Allen, Appl. Phys. Lett. 75, 2374 (1999).

    CAS  Google Scholar 

  73. Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. X. Zhao, and M. Sadeghi, Large ground-to-first-excited-slate transition energy separation for InAs quantum dots emitting at 1.3 micron, Appl. Phys. Lett. 81, 1621, (2002).

    CAS  Google Scholar 

  74. M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Yu. M. Shernyakov, Spectrotemporal response of 1.3 micron quantum-dot lasers, Appl. Phys. Lett. 81, 3846, (2002).

    Article  CAS  Google Scholar 

  75. O. B. Shchekin, D. G. Deppe, 1.3 micron InAs quantum dot laser with To = 161K from 0 to 80 degrees C, Appl. Phys. Lett. 80, 3277 (2002).

    CAS  Google Scholar 

  76. A. Markus, A. Fiore, J. D. Ganiere, U. Oesterle, J. X. Chen, B. Deveaud, M. Ilegems, and H. Riechert, Comparison of radiative properties of InAs quantum dots and GaInNAs quantum wells emitting around 1.3 micron, Appl. Phys. Lett. 80, 911 (2002).

    Article  CAS  Google Scholar 

  77. Y. Qiu, P. Gogna, S. Forouhar, A. Stintz, and L. F. Lester, High-performance InAs quantum-dot lasers near 1.3 micron, Appl. Phys. Lett. 79, 3570 (2001).

    CAS  Google Scholar 

  78. K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, High characteristic temperature of near-1.3-mu m InGaAs/GaAs quantum-dot lasers at room temperature, Appl. Phys. Lett. 76, 3349, (2000).

    Article  CAS  Google Scholar 

  79. P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, E. C. Le-Ru, and R. Murray, Optimizing the growth of 1.3 mu m InAs/GaAs quantum dots, Phys. Rev. B 64, 235317 (2001).

    Google Scholar 

  80. J. Tatebayashi, M. Nishioka, and Y. Arakawa, Over 1.5 micron light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor phase deposition, Appl. Phys. Lett. 78, 3469, (2000).

    Google Scholar 

  81. M. Sopanen, H. P. Xin, and C. W. Tu, Self-assembled GaInNAs quantum dots for 1.3 and 1.55 μm emission on GaAs, Appl. Phys. Lett. 75, 994, (2000).

    Google Scholar 

  82. US patent Office, patent No. 6, 177, 684, Y. Sugiyama (2001).

    Google Scholar 

  83. G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, IEEE Photo-nics Technol. Lett. 12, 230 (2000); O. B. Shchekin, G. Park, D. L. Huffaker, and D. G. Deppe, Discrete energy level separation and the threshold temperature dependence of quantum dot lasers, Appl. Phys. Lett. 76, 466 (2000).

    Google Scholar 

  84. X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, and K. J. Malloy, Electron. Lett. 36, 41 (2000).

    CAS  Google Scholar 

  85. A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-threshold current density 1.3 μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure,” IEEE Photon. Technol. Lett.. 12, 591 (2000).

    Article  Google Scholar 

  86. R. Leon, S. Fafard, D. Leonard, J. L. Merz, and P. M. Petroff, Visible Luminescence from large Semiconductor Quantum Dot Ensembles, Appl. Phys. Lett. 67, 521 (1995).

    Article  CAS  Google Scholar 

  87. H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs/AlGaAs quantum dots grown on a GaAs(100) substrate, Appl. Phys. Lett. 80, 3769 (2002).

    CAS  Google Scholar 

  88. C. Ni. Allen, P. Finnie S. Raymond, Z. R. Wasilewski, and S. Fafard, Inhomogeneous broadening in quantum dots with ternary aluminum alloys, Appl. Phys. Lett. 79, 2701 (2001).

    Article  CAS  Google Scholar 

  89. S. Fafard, Z. Wasilewski, J. McCaffrey, S. Raymond, and S. Charbonneau, In As Self-Assembled Quantum Dots grown by Molecular Beam Epitaxy on InP substrate, Appl. Phys. Lett. 68, 991 (1996).

    Article  CAS  Google Scholar 

  90. C. Ní. Allen, P. J. Poole, P. Marshall, J. Fraser, S. Raymond, and S. Fafard, Appl. Phys. Lett. 80, 3629 (2002).

    Article  CAS  Google Scholar 

  91. C. Paranthoen, N. Bertu, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, Height dispersion control of InAs/InP quantum dots emitting at 1.55μm, Appl. Phys. Lett. 78, 1751 (2001).

    Article  CAS  Google Scholar 

  92. Wang RH, Stintz A, Varangis PM, Newell T. C., Li H, Malloy K. J., and Lester L. F., IEEE Photonics Technology Letters 13, 767 (2001).

    Google Scholar 

  93. V. M. Ustinov, A. E. Zhukov, A. Yu. Egorov, A. R. Kovsh, S. V. Zaitsev, N. Yu. Gordeev, V. I. Kopchatov, N. N. Ledentsov, A. F. Tsatsul’nikov, B. V. Volovik, P. S. Kop’ev, Z. I. Alferov, S. S. Ruvimov, Z. Liliental-Weber, and D. Bimberg, Electron. Lett. 34, 670 (1998).

    Article  CAS  Google Scholar 

  94. H. Saito, K. Nishi, A. Kamei, and S. Sugou, IEEE Photonics Technology Letters 12, 1298 (2000).

    Google Scholar 

  95. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, IEEE Photonics Technology Letters 11, 1527 (1999).

    Google Scholar 

  96. P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, Enhanced Degradation Resistance of Quantum Dot Lasers to Radiation Damage, Appl. Phys. Lett. 77, 624 (2000).

    Article  CAS  Google Scholar 

  97. R. Leon, G. M. Swift, B. Magness, W. A. Taylor, Y. S. Tang, K. L. Wang, P. Dowd, and Y. H. Zhang, Appl. Phys. Lett. 76, 2074 (2000).

    CAS  Google Scholar 

  98. H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, S. Fafard, Quantum Dot Infrared Photodetectors, Appl. Phys. Lett. 78, 79 (2001).

    CAS  Google Scholar 

  99. A. D. Stiff-Roberts, S. Chakrabarti, S. Pradhan, B. Kochman, and P. Bhattacharya, Raster-scan imaging with normal-incidence, midinfrared InAs/GaAs quantum dot infrared photodetectors, Appl. Phys. Lett. 80, 3265 (2002).

    Article  CAS  Google Scholar 

  100. L. Chu, A. Zrenner, M. Bichler, and G. Abstreiter, Quantum-dot infrared photodetector with lateral carrier transport, Appl. Phys. Lett. 79, 2249 (2001).

    CAS  Google Scholar 

  101. R. Leon, S. Marcinkevicius, X. Z. Liao, J. Zou, D. J. H. Cockayne, and S. Fafard, Phys. Rev. B 60, R8517 (1999).

    Google Scholar 

  102. S. Sauvage, P. Boucaud, F. H. Julien, J. M. Gérard, and V. Thierry-Mieg, Appl. Phys. Lett. 71, 2785 (1997).

    CAS  Google Scholar 

  103. D. Pan, E. Towe, and S. Kennerly, Appl. Phys. Lett. 73, 1937 (1998).

    CAS  Google Scholar 

  104. L. Chu, A. Zrenner, G. Bohm, and G. Abstreiter, Appl. Phys. Lett. 75, 3599 (1999).

    CAS  Google Scholar 

  105. F. Yang, K. Hinzer, C. Ni. Allen, S. Fafard, G. C. Aers, Yan Feng, J. McCaffrey, and S. Charbonneau, Superlattices and Microstructures 25, 419 (1999).

    Article  CAS  Google Scholar 

  106. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, Coupling and Entangling of Quantum States in Quantum Dot Molecules, SCIENCE 291, 451 (2001).

    Article  CAS  Google Scholar 

  107. P. Hawrylak, S, Fafard, and Z. Wasilewski, Engineering Quantum States in Self-Assembled Quantum Dots for Quantum Information Processing, Condensed Matter News 7, 16 (1999).

    CAS  Google Scholar 

  108. S. Fafard, Phys. Rev. B 50, 1961 (1994); S. Fafard, Phys. Rev. B 46, 4659 (1992).

    Google Scholar 

  109. T.-E. Nee, N.-T. Yeh, J.-I. Chyi, C.-T. Lee, Solid State Electronics 42, 1331 (1998).

    Article  CAS  Google Scholar 

  110. S. Fafard, Appl. Phys. Lett. 76, 2707 (2000).

    CAS  Google Scholar 

  111. S. Fafard, E. Fortin, and J. L. Merz, Phys. Rev. B 48, 11062 (1993).

    Google Scholar 

  112. J. Lefebvre, P. J. Poole, G. C. Aers, D. Chithrani, and R. L. Williams, Tunable emission from InAs quantum dots on InP nano-templates, J. Vac. Sci. Technol. B, 20, 2173 (2002).

    Article  CAS  Google Scholar 

  113. J. Lefebvre, P. J. Poole, J. Fraser, G. C. Aers, D. Chithrani, and R. L. Williams, Self-assembled InAs quantum dots on InP nano-templates, J. Cryst. Growth 234, 391 (2002).

    Article  CAS  Google Scholar 

  114. R. L. Williams, G. C. Aers, P. J. Poole, J. Lefebvre, D. Chithrani, and B. Lamontagne, Controlling the self-assembly of InAs/InP Quantum Dots, J. Cryst. Growth 223, 321–331 (2001).

    Article  CAS  Google Scholar 

  115. H. Lee, J. A. Johnson, M. Y. He, J. S. Speck, and P. M. Petroff, Strain-engineered self-assembled semiconductor quantum dot lattices, Appl. Phys. Lett. 78, 105 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Fafard, S. (2004). Quantum-Confined Optoelectronic Systems. In: Di Ventra, M., Evoy, S., Heflin, J.R. (eds) Introduction to Nanoscale Science and Technology. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7757-2_19

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7757-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7720-3

  • Online ISBN: 978-1-4020-7757-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics