Skip to main content

Vascular and Neuronal Development: Intersecting Parallelisms and rossroads

  • Chapter
Book cover Therapeutic Neovascularization–Quo Vadis?

Abstract

Two key events during evolution allowed vertebrates to develop specialized tissues able to perform complex tasks: the formation of a highly branched vascular system ensuring that all tissues receive adequate blood supply, and the development of a nervous system in which nerves branches to transmit electrical signal to peripheral organs. Both networks are laid down in a complex and stereotyped manner, which is tightly controlled by a series of shared developmental cues. Vessels and nerves use similar signals and principles to grow, differentiate and navigate toward their final targets. Moreover, the vascular and the nervous system cross-talk and, when deregulated, they contribute to medically relevant diseases. The emerging evidence that both systems share several molecular pathways not only provides an important link between vascular biology and neuroscience, but also promises to accelerate the discovery of new pathogenetic insights and therapeutic strategies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Osterfield, M., M.W. Kirschner, and J.G. Flanagan, Graded positional information: interpretation for both fate and guidance. Cell, 2003. 113(4): p. 425–8.

    Article  PubMed  CAS  Google Scholar 

  2. Panchision, D.M. and R.D. McKay, The control of neural stem cells by morphogenic signals. Curr Opin Genet Dev, 2002. 12(4): p. 478–87.

    Article  PubMed  CAS  Google Scholar 

  3. Temple, S., The development of neural stem cells. Nature, 2001. 414(6859): p. 112–7.

    Article  PubMed  CAS  Google Scholar 

  4. Gaiano, N. and G. Fishell, The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci, 2002. 25: p. 471–90.

    Article  PubMed  CAS  Google Scholar 

  5. Hitoshi, S., et al., Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev, 2002. 16(7): p. 846–58.

    Article  PubMed  CAS  Google Scholar 

  6. Patten, I. and M. Placzek, The role of Sonic hedgehog in neural tube patterning. Cell Mol Life Sci, 2000. 57(12): p. 1695–708.

    Article  PubMed  CAS  Google Scholar 

  7. Dupin, E., C. Real, and N. Ledouarin, The neural crest stem cells: control of neural crest cell fate and plasticity by endothelin-3. An Acad Bras Cienc, 2001. 73(4): p. 533–45.

    PubMed  CAS  Google Scholar 

  8. Knecht, A.K. and M. Bronner-Fraser, Induction of the neural crest: a multigene process. Nat Rev Genet, 2002. 3(6): p. 453–61.

    Article  PubMed  CAS  Google Scholar 

  9. Etchevers, H.C., G. Couly, and N.M. Le Douarin, Morphogenesis of the branchial vascular sector. Trends Cardiovasc Med, 2002. 12(7): p. 299–304.

    Article  PubMed  Google Scholar 

  10. Aybar, M.J. and R. Mayor, Early induction of neural crest cells: lessons learned from frog, fish and chick. Curr Opin Genet Dev, 2002. 12(4): p. 452–8.

    Article  PubMed  CAS  Google Scholar 

  11. Maschhoff, K.L. and H.S. Baldwin, Molecular determinants of neural crest migration. Am J Med Genet, 2000. 97(4): p. 280–8.

    Article  PubMed  CAS  Google Scholar 

  12. Shah, N.M., A.K. Groves, and D.J. Anderson, Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell, 1996. 85(3): p. 331–43.

    Article  PubMed  CAS  Google Scholar 

  13. Carmeliet, P., Developmental biology. One cell, two fates. Nature, 2000. 408(6808): p. 43, 45.

    Article  PubMed  CAS  Google Scholar 

  14. Mikkola, H.K. and S.H. Orkin, The search for the hemangioblast. J Hematother Stem Cell Res, 2002. 11(1): p. 9–17.

    Article  PubMed  Google Scholar 

  15. Carmeliet, P., Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet, 2003. 4(9): p. 710–20.

    Article  PubMed  CAS  Google Scholar 

  16. Vogeli, K.M., et al., A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature, 2006. 443(7109): p. 337–9.

    Article  PubMed  CAS  Google Scholar 

  17. Rovainen, C.M., Labeling of developing vascular endothelium after injections of rhodamine-dextran into blastomeres of Xenopus laevis. J Exp Zool, 1991. 259(2): p. 209–21.

    Article  PubMed  CAS  Google Scholar 

  18. Childs, S., et al., Patterning of angiogenesis in the zebrafish embryo. Development, 2002. 129(4): p. 973–82.

    PubMed  CAS  Google Scholar 

  19. Brown, L.A., et al., Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos. Mech Dev, 2000. 90(2): p. 237–52.

    Article  PubMed  CAS  Google Scholar 

  20. Liao, W., et al., Hhex and scl function in parallel to regulate early endothelial and blood differentiation in zebrafish. Development, 2000. 127(20): p. 4303–13.

    PubMed  CAS  Google Scholar 

  21. Carmeliet, P., Developmental biology. Controlling the cellular brakes. Nature, 1999. 401(6754): p. 657–8.

    Article  PubMed  CAS  Google Scholar 

  22. Lyden, D., et al., Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature, 1999. 401(6754): p. 670–7.

    Article  PubMed  CAS  Google Scholar 

  23. Zhong, T.P., et al., Gridlock signalling pathway fashions the first embryonic artery. Nature, 2001. 414(6860): p. 216–20.

    Article  PubMed  CAS  Google Scholar 

  24. Fouquet, B., et al., Vessel patterning in the embryo of the zebrafish: guidance by notochord. Dev Biol, 1997. 183(1): p. 37–48.

    Article  PubMed  CAS  Google Scholar 

  25. Sumoy, L., et al., A role for notochord in axial vascular development revealed by analysis of phenotype and the expression of VEGR-2 in zebrafish flh and ntl mutant embryos. Mech Dev, 1997. 63(1): p. 15–27.

    Article  PubMed  CAS  Google Scholar 

  26. Ferrara, N., H.P. Gerber, and J. LeCouter, The biology of VEGF and its receptors. Nat Med, 2003. 9(6): p. 669–76.

    Article  PubMed  CAS  Google Scholar 

  27. Chen, J.N., et al., Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development, 1996. 123: p. 293–302.

    PubMed  CAS  Google Scholar 

  28. Lawson, N.D., A.M. Vogel, and B.M. Weinstein, sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell, 2002. 3(1): p. 127–36.

    Article  PubMed  CAS  Google Scholar 

  29. Lawson, N.D. and B.M. Weinstein, In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol, 2002. 248(2): p. 307–18.

    Article  PubMed  CAS  Google Scholar 

  30. Mukouyama, Y.S., et al., Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell, 2002. 109(6): p. 693–705.

    Article  PubMed  CAS  Google Scholar 

  31. Visconti, R.P., C.D. Richardson, and T.N. Sato, Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci U S A, 2002. 99(12): p. 8219–24.

    Article  PubMed  CAS  Google Scholar 

  32. Stalmans, I., et al., Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest, 2002. 109(3): p. 327–36.

    Article  PubMed  CAS  Google Scholar 

  33. Lawson, N.D. and B.M. Weinstein, Arteries and veins: making a difference with zebrafish. Nat Rev Genet, 2002. 3(9): p. 674–82.

    Article  PubMed  CAS  Google Scholar 

  34. Lawson, N.D., et al., Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development, 2001. 128(19): p. 3675–83.

    PubMed  CAS  Google Scholar 

  35. Lawson, N.D., et al., phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev, 2003. 17(11): p. 1346–51.

    Article  PubMed  CAS  Google Scholar 

  36. Kalimo, H., et al., CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol, 2002. 12(3): p. 371–84.

    Article  PubMed  CAS  Google Scholar 

  37. You, L.R., et al., Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature, 2005. 435(7038): p. 98–104.

    Article  PubMed  CAS  Google Scholar 

  38. Cleaver, O. and D.A. Melton, Endothelial signaling during development. Nat Med, 2003. 9(6): p. 661–8.

    Article  PubMed  CAS  Google Scholar 

  39. Compernolle, V., et al., Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med, 2002. 8(7): p. 702–10.

    PubMed  CAS  Google Scholar 

  40. Eremina, V., et al., Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest, 2003. 111(5): p. 707–16.

    Article  PubMed  CAS  Google Scholar 

  41. Gerber, H.P., et al., VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med, 1999. 5(6): p. 623–8.

    Article  PubMed  CAS  Google Scholar 

  42. Huxlin, K.R., A.J. Sefton, and J.H. Furby, The origin and development of retinal astrocytes in the mouse. J Neurocytol, 1992. 21(7): p. 530–44.

    Article  PubMed  CAS  Google Scholar 

  43. Zerlin, M. and J.E. Goldman, Interactions between glial progenitors and blood vessels during early postnatal corticogenesis: blood vessel contact represents an early stage of astrocyte differentiation. J Comp Neurol, 1997. 387(4): p. 537–46.

    Article  PubMed  CAS  Google Scholar 

  44. Palmer, T.D., A.R. Willhoite, and F.H. Gage, Vascular niche for adult hippocampal neurogenesis. J Comp Neurol, 2000. 425(4): p. 479–94.

    Article  PubMed  CAS  Google Scholar 

  45. Mi, H., H. Haeberle, and B.A. Barres, Induction of astrocyte differentiation by endothelial cells. J Neurosci, 2001. 21(5): p. 1538–47.

    PubMed  CAS  Google Scholar 

  46. Leventhal, C., et al., Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci, 1999. 13(6): p. 450–64.

    Article  PubMed  CAS  Google Scholar 

  47. Bagnard, D., et al., Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J Neurosci, 2001. 21(10): p. 3332–41.

    PubMed  CAS  Google Scholar 

  48. Miao, H.Q., et al., Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol, 1999. 146(1): p. 233–42.

    Article  PubMed  CAS  Google Scholar 

  49. Kokaia, Z. and O. Lindvall, Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol, 2003. 13(1): p. 127–32.

    Article  PubMed  CAS  Google Scholar 

  50. Monje, M.L. and T. Palmer, Radiation injury and neurogenesis. Curr Opin Neurol, 2003. 16(2): p. 129–34.

    Article  PubMed  Google Scholar 

  51. Cooke, J.E. and C.B. Moens, Boundary formation in the hindbrain: Eph only it were simple. Trends Neurosci, 2002. 25(5): p. 260–7.

    Article  PubMed  CAS  Google Scholar 

  52. Krull, C.E., Segmental organization of neural crest migration. Mech Dev, 2001. 105(1–2): p. 37–45.

    Article  PubMed  CAS  Google Scholar 

  53. Tepass, U., D. Godt, and R. Winklbauer, Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr Opin Genet Dev, 2002. 12(5): p. 572–82.

    Article  PubMed  CAS  Google Scholar 

  54. Coulthard, M.G., et al., The role of the Eph-ephrin signalling system in the regulation of developmental patterning. Int J Dev Biol, 2002. 46(4): p. 375–84.

    PubMed  CAS  Google Scholar 

  55. Mellitzer, G., Q. Xu, and D.G. Wilkinson, Eph receptors and ephrins restrict cell intermingling and communication. Nature, 1999. 400(6739): p. 77–81.

    Article  PubMed  CAS  Google Scholar 

  56. Xu, Q., et al., Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development, 1995. 121(12): p. 4005–16.

    PubMed  CAS  Google Scholar 

  57. Cooke, J., et al., Eph signalling functions downstream of Val to regulate cell sorting and boundary formation in the caudal hindbrain. Development, 2001. 128(4): p. 571–80.

    PubMed  CAS  Google Scholar 

  58. Adams, R.H. and R. Klein, Eph receptors and ephrin ligands. essential mediators of vascular development. Trends Cardiovasc Med, 2000. 10(5): p. 183–8.

    Article  PubMed  CAS  Google Scholar 

  59. Brantley, D.M., et al., Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene, 2002. 21(46): p. 7011–26.

    Article  PubMed  CAS  Google Scholar 

  60. Gale, N.W., et al., Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol, 2001. 230(2): p. 151–60.

    Article  PubMed  CAS  Google Scholar 

  61. Shin, D., et al., Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol, 2001. 230(2): p. 139–50.

    Article  PubMed  CAS  Google Scholar 

  62. Wang, H.U., Z.F. Chen, and D.J. Anderson, Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell, 1998. 93(5): p. 741–53.

    Article  PubMed  CAS  Google Scholar 

  63. Gerety, S.S., et al., Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell, 1999. 4(3): p. 403–14.

    Article  PubMed  CAS  Google Scholar 

  64. Foo, S.S., et al., Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell, 2006. 124(1): p. 161–73.

    Article  PubMed  CAS  Google Scholar 

  65. Carmeliet, P. and M. Tessier-Lavigne, Common mechanisms of nerve and blood vessel wiring. Nature, 2005. 436(7048): p. 193–200.

    Article  PubMed  CAS  Google Scholar 

  66. Gerhardt, H., et al., VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol, 2003. 161(6): p. 1163–77.

    Article  PubMed  CAS  Google Scholar 

  67. Autiero, M., et al., Role of neural guidance signals in blood vessel navigation. Cardiovasc Res, 2005. 65(3): p. 629–38.

    Article  PubMed  CAS  Google Scholar 

  68. Honma, Y., et al., Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron, 2002. 35(2): p. 267–82.

    Article  PubMed  CAS  Google Scholar 

  69. Kuruvilla, R., et al., A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell, 2004. 118(2): p. 243–55.

    Article  PubMed  CAS  Google Scholar 

  70. Dickson, B.J., Molecular mechanisms of axon guidance. Science, 2002. 298(5600): p. 1959–64.

    Article  PubMed  CAS  Google Scholar 

  71. Huber, A.B., et al., Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci, 2003. 26: p. 509–63.

    Article  PubMed  CAS  Google Scholar 

  72. Barallobre, M.J., et al., The Netrin family of guidance factors: emphasis on Netrin-1 signalling. Brain Res Brain Res Rev, 2005. 49(1): p. 22–47.

    Article  PubMed  CAS  Google Scholar 

  73. Hong, K., et al., A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell, 1999. 97(7): p. 927–41.

    Article  PubMed  CAS  Google Scholar 

  74. Keleman, K. and B.J. Dickson, Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron, 2001. 32(4): p. 605–17.

    Article  PubMed  CAS  Google Scholar 

  75. Fazeli, A., et al., Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature, 1997. 386(6627): p. 796–804.

    Article  PubMed  CAS  Google Scholar 

  76. Serafini, T., et al., Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell, 1996. 87(6): p. 1001–14.

    Article  PubMed  CAS  Google Scholar 

  77. Lu, X., et al., The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature, 2004. 432(7014): p. 179–86.

    Article  PubMed  CAS  Google Scholar 

  78. Wilson, B.D., et al., Netrins promote developmental and therapeutic angiogenesis. Science, 2006. 313(5787): p. 640–4.

    Article  PubMed  CAS  Google Scholar 

  79. Park, K.W., et al., The axonal attractant Netrin-1 is an angiogenic factor. Proc Natl Acad Sci U S A, 2004. 101(46): p. 16210–5.

    Article  PubMed  CAS  Google Scholar 

  80. Kidd, T., et al., Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell, 1998. 92(2): p. 205–15.

    Article  PubMed  CAS  Google Scholar 

  81. Brose, K. and M. Tessier-Lavigne, Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr Opin Neurobiol, 2000. 10(1): p. 95–102.

    Article  PubMed  CAS  Google Scholar 

  82. Kidd, T., K.S. Bland, and C.S. Goodman, Slit is the midline repellent for the robo receptor in Drosophila. Cell, 1999. 96(6): p. 785–94.

    Article  PubMed  CAS  Google Scholar 

  83. Li, H.S., et al., Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell, 1999. 96(6): p. 807–18.

    Article  PubMed  CAS  Google Scholar 

  84. Wang, K.H., et al., Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell, 1999. 96(6): p. 771–84.

    Article  PubMed  CAS  Google Scholar 

  85. Plump, A.S., et al., Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron, 2002. 33(2): p. 219–32.

    Article  PubMed  CAS  Google Scholar 

  86. Long, H., et al., Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron, 2004. 42(2): p. 213–23.

    Article  PubMed  CAS  Google Scholar 

  87. Sabatier, C., et al., The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell, 2004. 117(2): p. 157–69.

    Article  PubMed  CAS  Google Scholar 

  88. Park, K.W., et al., Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol, 2003. 261(1): p. 251–67.

    Article  PubMed  CAS  Google Scholar 

  89. Huminiecki, L., et al., Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics, 2002. 79(4): p. 547–52.

    Article  PubMed  CAS  Google Scholar 

  90. Bedell, V.M., et al., roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci U S A, 2005. 102(18): p. 6373–8.

    Article  PubMed  CAS  Google Scholar 

  91. Wang, B., et al., Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell, 2003. 4(1): p. 19–29.

    Article  PubMed  Google Scholar 

  92. He, Z. and M. Tessier-Lavigne, Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell, 1997. 90(4): p. 739–51.

    Article  PubMed  CAS  Google Scholar 

  93. Chen, H., et al., Semaphorin-neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron, 1998. 21(6): p. 1283–90.

    Article  PubMed  CAS  Google Scholar 

  94. Takahashi, T., et al., Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors. Nat Neurosci, 1998. 1(6): p. 487–93.

    Article  PubMed  CAS  Google Scholar 

  95. Fuh, G., K.C. Garcia, and A.M. de Vos, The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. J Biol Chem, 2000. 275(35): p. 26690–5.

    PubMed  CAS  Google Scholar 

  96. Makinen, T., et al., Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. J Biol Chem, 1999. 274(30): p. 21217–22.

    Article  PubMed  CAS  Google Scholar 

  97. Migdal, M., et al., Neuropilin-1 is a placenta growth factor-2 receptor. J Biol Chem, 1998. 273(35): p. 22272–8.

    Article  PubMed  CAS  Google Scholar 

  98. Gu, C., et al., Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. J Biol Chem, 2002. 277(20): p. 18069–76.

    Article  PubMed  CAS  Google Scholar 

  99. Gu, C., et al., Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell, 2003. 5(1): p. 45–57.

    Article  PubMed  CAS  Google Scholar 

  100. Kruger, R.P., J. Aurandt, and K.L. Guan, Semaphorins command cells to move. Nat Rev Mol Cell Biol, 2005. 6(10): p. 789–800.

    Article  PubMed  CAS  Google Scholar 

  101. Basile, J.R., et al., Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res, 2004. 64(15): p. 5212–24.

    Article  PubMed  CAS  Google Scholar 

  102. Weinstein, B.M., Vessels and nerves: marching to the same tune. Cell, 2005. 120(3): p. 299–302.

    Article  PubMed  CAS  Google Scholar 

  103. Eichmann, A., et al., Guidance of vascular and neural network formation. Curr Opin Neurobiol, 2005. 15(1): p. 108–15.

    Article  PubMed  CAS  Google Scholar 

  104. O’Leary, D.D. and D.G. Wilkinson, Eph receptors and ephrins in neural development. Curr Opin Neurobiol, 1999. 9(1): p. 65–73.

    Article  PubMed  CAS  Google Scholar 

  105. Kullander, K. and R. Klein, Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol, 2002. 3(7): p. 475–86.

    Article  PubMed  CAS  Google Scholar 

  106. Janes, P.W., et al., Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell, 2005. 123(2): p. 291–304.

    Article  PubMed  CAS  Google Scholar 

  107. Zimmer, M., et al., EphB-ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat Cell Biol, 2003. 5(10): p. 869–78.

    Article  PubMed  CAS  Google Scholar 

  108. Pasquale, E.B., Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol, 2005. 6(6): p. 462–75.

    Article  PubMed  CAS  Google Scholar 

  109. Hamada, K., et al., Distinct roles of ephrin-B2 forward and EphB4 reverse signaling in endothelial cells. Arterioscler Thromb Vasc Biol, 2003. 23(2): p. 190–7.

    Article  PubMed  CAS  Google Scholar 

  110. Oike, Y., et al., Regulation of vasculogenesis and angiogenesis by EphB/ephrin-B2 signaling between endothelial cells and surrounding mesenchymal cells. Blood, 2002. 100(4): p. 1326–33.

    PubMed  CAS  Google Scholar 

  111. Charron, F., et al., The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell, 2003. 113(1): p. 11–23.

    Article  PubMed  CAS  Google Scholar 

  112. Torres, M., E. Gomez-Pardo, and P. Gruss, Pax2 contributes to inner ear patterning and optic nerve trajectory. Development, 1996. 122(11): p. 3381–91.

    PubMed  CAS  Google Scholar 

  113. Trousse, F., et al., Control of retinal ganglion cell axon growth: a new role for Sonic hedgehog. Development, 2001. 128(20): p. 3927–36.

    PubMed  CAS  Google Scholar 

  114. Augsburger, A., et al., BMPs as mediators of roof plate repulsion of commissural neurons. Neuron, 1999. 24(1): p. 127–41.

    Article  PubMed  CAS  Google Scholar 

  115. Charron, F. and M. Tessier-Lavigne, Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development, 2005. 132(10): p. 2251–62.

    Article  PubMed  CAS  Google Scholar 

  116. Callahan, C.A., et al., Control of neuronal pathway selection by a Drosophila receptor protein-tyrosine kinase family member. Nature, 1995. 376(6536): p. 171–4.

    Article  PubMed  CAS  Google Scholar 

  117. Bonkowsky, J.L., et al., Axon routing across the midline controlled by the Drosophila Derailed receptor. Nature, 1999. 402(6761): p. 540–4.

    Article  PubMed  CAS  Google Scholar 

  118. Yoshikawa, S., et al., Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature, 2003. 422(6932): p. 583–8.

    Article  PubMed  CAS  Google Scholar 

  119. Lyuksyutova, A.I., et al., Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science, 2003. 302(5652): p. 1984–8.

    Article  PubMed  CAS  Google Scholar 

  120. Bourikas, D., et al., Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord. Nat Neurosci, 2005. 8(3): p. 297–304.

    Article  PubMed  CAS  Google Scholar 

  121. Zachary, I., Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals, 2005. 14(5): p. 207–21.

    Article  PubMed  CAS  Google Scholar 

  122. Jin, K.L., X.O. Mao, and D.A. Greenberg, Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci U S A, 2000. 97(18): p. 10242–7.

    Article  PubMed  CAS  Google Scholar 

  123. Matsuzaki, H., et al., Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. Faseb J, 2001. 15(7): p. 1218–20.

    PubMed  CAS  Google Scholar 

  124. Qiu, M.H., R. Zhang, and F.Y. Sun, Enhancement of ischemia-induced tyrosine phosphorylation of Kv1.2 by vascular endothelial growth factor via activation of phosphatidylinositol 3-kinase. J Neurochem, 2003. 87(6): p. 1509–17.

    Article  PubMed  CAS  Google Scholar 

  125. Silverman, W.F., et al., Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience, 1999. 90(4): p. 1529–41.

    Article  PubMed  CAS  Google Scholar 

  126. Sondell, M., G. Lundborg, and M. Kanje, Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci, 1999. 19(14): p. 5731–40.

    PubMed  CAS  Google Scholar 

  127. Bocker-Meffert, S., et al., Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. Invest Ophthalmol Vis Sci, 2002. 43(6): p. 2021–6.

    PubMed  Google Scholar 

  128. Cheng, L., et al., Anti-chemorepulsive effects of vascular endothelial growth factor and placental growth factor-2 in dorsal root ganglion neurons are mediated via neuropilin-1 and cyclooxygenase-derived prostanoid production. J Biol Chem, 2004. 279(29): p. 30654–61.

    Article  PubMed  CAS  Google Scholar 

  129. Sondell, M., F. Sundler, and M. Kanje, Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci, 2000. 12(12): p. 4243–54.

    Article  PubMed  CAS  Google Scholar 

  130. Jin, K., et al., Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A, 2002. 99(18): p. 11946–50.

    Article  PubMed  CAS  Google Scholar 

  131. Zhu, Y., et al., Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. Faseb J, 2003. 17(2): p. 186–93.

    Article  PubMed  CAS  Google Scholar 

  132. Schanzer, A., et al., Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol, 2004. 14(3): p. 237–48.

    Article  PubMed  Google Scholar 

  133. Maurer, M.H., et al., Expression of vascular endothelial growth factor and its receptors in rat neural stem cells. Neurosci Lett, 2003. 344(3): p. 165–8.

    Article  PubMed  CAS  Google Scholar 

  134. Sondell, M., G. Lundborg, and M. Kanje, Vascular endothelial growth factor stimulates Schwann cell invasion and neovascularization of acellular nerve grafts. Brain Res, 1999. 846(2): p. 219–28.

    Article  PubMed  CAS  Google Scholar 

  135. Forstreuter, F., R. Lucius, and R. Mentlein, Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J Neuroimmunol, 2002. 132(1–2): p. 93–8.

    Article  PubMed  CAS  Google Scholar 

  136. Krum, J.M., N. Mani, and J.M. Rosenstein, Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience, 2002. 110(4): p. 589–604.

    Article  PubMed  CAS  Google Scholar 

  137. Lambrechts, D., et al., Low expression VEGF haplotype increases the risk for tetralogy of Fallot: a family based association study. J Med Genet, 2005. 42(6): p. 519–22.

    Article  PubMed  CAS  Google Scholar 

  138. Newton, S.S., et al., Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors. J Neurosci, 2003. 23(34): p. 10841–51.

    PubMed  CAS  Google Scholar 

  139. Croll, S.D., J.H. Goodman, and H.E. Scharfman, Vascular endothelial growth factor (VEGF) in seizures: a double-edged sword. Adv Exp Med Biol, 2004. 548: p. 57–68.

    PubMed  CAS  Google Scholar 

  140. McCloskey, D.P., S.D. Croll, and H.E. Scharfman, Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J Neurosci, 2005. 25(39): p. 8889–97.

    Article  PubMed  CAS  Google Scholar 

  141. Xu, J.Y., et al., Vascular endothelial growth factor inhibits outward delayed-rectifier potassium currents in acutely isolated hippocampal neurons. Neuroscience, 2003. 118(1): p. 59–67.

    Article  PubMed  CAS  Google Scholar 

  142. Lennmyr, F., et al., Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol, 1998. 57(9): p. 874–82.

    PubMed  CAS  Google Scholar 

  143. Croll, S.D. and S.J. Wiegand, Vascular growth factors in cerebral ischemia. Mol Neurobiol, 2001. 23(2–3): p. 121–35.

    Article  PubMed  CAS  Google Scholar 

  144. Hulsmann, S., et al., Blockade of astrocyte metabolism causes delayed excitation as revealed by voltage-sensitive dyes in mouse brainstem slices. Exp Brain Res, 2003. 150(1): p. 117–21.

    PubMed  Google Scholar 

  145. Keyser, D.O. and T.C. Pellmar, Synaptic transmission in the hippocampus: critical role for glial cells. Glia, 1994. 10(4): p. 237–43.

    Article  PubMed  CAS  Google Scholar 

  146. Balice-Gordon, R.J., Dynamic roles at the neuromuscular junction. Schwann cells. Curr Biol, 1996. 6(9): p. 1054–6.

    Article  PubMed  CAS  Google Scholar 

  147. Koirala, S., L.V. Reddy, and C.P. Ko, Roles of glial cells in the formation, function, and maintenance of the neuromuscular junction. J Neurocytol, 2003. 32(5–8): p. 987–1002.

    Article  PubMed  CAS  Google Scholar 

  148. Sanes, J.R. and J.W. Lichtman, Development of the vertebrate neuromuscular junction. Annu Rev Neurosci, 1999. 22: p. 389–442.

    Article  PubMed  CAS  Google Scholar 

  149. Auld, D.S., et al., Modulation of neurotransmission by reciprocal synapse-glial interactions at the neuromuscular junction. J Neurocytol, 2003. 32(5–8): p. 1003–15.

    Article  PubMed  CAS  Google Scholar 

  150. Auld, D.S. and R. Robitaille, Perisynaptic Schwann cells at the neuromuscular junction: nerve- and activity-dependent contributions to synaptic efficacy, plasticity, and reinnervation. Neuroscientist, 2003. 9(2): p. 144–57.

    Article  PubMed  Google Scholar 

  151. Corfas, G., et al., Mechanisms and roles of axon-Schwann cell interactions. J Neurosci, 2004. 24(42): p. 9250–60.

    Article  PubMed  CAS  Google Scholar 

  152. Kang, H., L. Tian, and W. Thompson, Terminal Schwann cells guide the reinnervation of muscle after nerve injury. J Neurocytol, 2003. 32(5–8): p. 975–85.

    Article  PubMed  CAS  Google Scholar 

  153. Lin, W., et al., Aberrant development of motor axons and neuromuscular synapses in erbB2-deficient mice. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1299–304.

    Article  PubMed  CAS  Google Scholar 

  154. Morris, J.K., et al., Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron, 1999. 23(2): p. 273–83.

    Article  PubMed  CAS  Google Scholar 

  155. Woldeyesus, M.T., et al., Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes Dev, 1999. 13(19): p. 2538–48.

    Article  PubMed  CAS  Google Scholar 

  156. Wolpowitz, D., et al., Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron, 2000. 25(1): p. 79–91.

    Article  PubMed  CAS  Google Scholar 

  157. Feng, Z., S. Koirala, and C.P. Ko, Synapse-glia interactions at the vertebrate neuromuscular junction. Neuroscientist, 2005. 11(5): p. 503–13.

    Article  PubMed  CAS  Google Scholar 

  158. Slezak, M. and F.W. Pfrieger, New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci, 2003. 26(10): p. 531–5.

    Article  PubMed  CAS  Google Scholar 

  159. Ullian, E.M., K.S. Christopherson, and B.A. Barres, Role for glia in synaptogenesis. Glia, 2004. 47(3): p. 209–16.

    Article  PubMed  Google Scholar 

  160. Dickens, P., P. Hill, and M.R. Bennett, Schwann cell dynamics with respect to newly formed motor-nerve terminal branches on mature (Bufo marinus) muscle fibers. J Neurocytol, 2003. 32(4): p. 381–92.

    Article  PubMed  CAS  Google Scholar 

  161. Macleod, G.T., P.A. Dickens, and M.R. Bennett, Formation and function of synapses with respect to Schwann cells at the end of motor nerve terminal branches on mature amphibian (Bufo marinus) muscle. J Neurosci, 2001. 21(7): p. 2380–92.

    PubMed  CAS  Google Scholar 

  162. Frey, D., et al., Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci, 2000. 20(7): p. 2534–42.

    PubMed  CAS  Google Scholar 

  163. Pun, S., et al., Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci, 2006. 9(3): p. 408–19.

    Article  PubMed  CAS  Google Scholar 

  164. Dengler, R., et al., Amyotrophic lateral sclerosis: macro-EMG and twitch forces of single motor units. Muscle Nerve, 1990. 13(6): p. 545–50.

    Article  PubMed  CAS  Google Scholar 

  165. De Winter, F., et al., The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol Cell Neurosci, 2006. 32(1–2): p. 102–17.

    Article  PubMed  CAS  Google Scholar 

  166. De Wit, J., et al., Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix. Mol Cell Neurosci, 2005. 29(1): p. 40–55.

    Article  PubMed  CAS  Google Scholar 

  167. Kantor, D.B., et al., Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron, 2004. 44(6): p. 961–75.

    Article  PubMed  CAS  Google Scholar 

  168. Cavanagh, J.B., The significance of the ‘‘dying back’’ process in experimental and human neurological disease. Int Rev Exp Pathol, 1964. 3: p. 219–67.

    PubMed  CAS  Google Scholar 

  169. Ferri, A., et al., Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease. Curr Biol, 2003. 13(8): p. 669–73.

    Article  PubMed  CAS  Google Scholar 

  170. Pinter, M.J., et al., Effects of 4-aminopyridine on muscle and motor unit force in canine motor neuron disease. J Neurosci, 1997. 17(11): p. 4500–7.

    PubMed  CAS  Google Scholar 

  171. Raff, M.C., A.V. Whitmore, and J.T. Finn, Axonal self-destruction and neurodegeneration. Science, 2002. 296(5569): p. 868–71.

    Article  PubMed  CAS  Google Scholar 

  172. Schmalbruch, H., et al., A new mouse mutant with progressive motor neuronopathy. J Neuropathol Exp Neurol, 1991. 50(3): p. 192–204.

    PubMed  CAS  Google Scholar 

  173. Sendtner, M., et al., Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature, 1992. 358(6386): p. 502–4.

    Article  PubMed  CAS  Google Scholar 

  174. Storkebaum, E., et al., Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci, 2005. 8(1): p. 85–92.

    Article  PubMed  CAS  Google Scholar 

  175. Shen, J., et al., How muscles recover from paresis and atrophy after intramuscular injection of botulinum toxin A: Study in juvenile rats. J Orthop Res, 2006. 24(5): p. 1128–35.

    Article  PubMed  CAS  Google Scholar 

  176. Vergani, L., et al., Systemic administration of insulin-like growth factor decreases motor neuron cell death and promotes muscle reinnervation. J Neurosci Res, 1998. 54(6): p. 840–7.

    Article  PubMed  CAS  Google Scholar 

  177. Arsic, N., et al., Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther, 2004. 10(5): p. 844–54.

    Article  PubMed  CAS  Google Scholar 

  178. Germani, A., et al., Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol, 2003. 163(4): p. 1417–28.

    PubMed  CAS  Google Scholar 

  179. Hayashi, T., et al., Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke, 1997. 28(10): p. 2039–44.

    PubMed  CAS  Google Scholar 

  180. Plate, K.H., et al., Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol, 1999. 58(6): p. 654–66.

    PubMed  CAS  Google Scholar 

  181. Zhang, Z.G., et al., VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest, 2000. 106(7): p. 829–38.

    PubMed  CAS  Google Scholar 

  182. Sun, Y., et al., VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest, 2003. 111(12): p. 1843–51.

    Article  PubMed  CAS  Google Scholar 

  183. Yano, A., et al., Encapsulated vascular endothelial growth factor-secreting cell grafts have neuroprotective and angiogenic effects on focal cerebral ischemia. J Neurosurg, 2005. 103(1): p. 104–14.

    Article  PubMed  CAS  Google Scholar 

  184. Zhang, Z.G., et al., Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab, 2002. 22(4): p. 379–92.

    Article  PubMed  CAS  Google Scholar 

  185. van Bruggen, N., et al., VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest, 1999. 104(11): p. 1613–20.

    PubMed  Google Scholar 

  186. Harrigan, M.R., et al., Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume. Acta Neurochir (Wien), 2003. 145(1): p. 49–53.

    Article  CAS  Google Scholar 

  187. Hayashi, T., K. Abe, and Y. Itoyama, Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab, 1998. 18(8): p. 887–95.

    Article  PubMed  CAS  Google Scholar 

  188. Storkebaum, E., D. Lambrechts, and P. Carmeliet, VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays, 2004. 26(9): p. 943–54.

    Article  PubMed  CAS  Google Scholar 

  189. Sun, Y., et al., Increased severity of cerebral ischemic injury in vascular endothelial growth factor-B-deficient mice. J Cereb Blood Flow Metab, 2004. 24(10): p. 1146–52.

    Article  PubMed  CAS  Google Scholar 

  190. Beck, H., et al., Cell type-specific expression of neuropilins in an MCA-occlusion model in mice suggests a potential role in post-ischemic brain remodeling. J Neuropathol Exp Neurol, 2002. 61(4): p. 339–50.

    PubMed  CAS  Google Scholar 

  191. Sun, F.Y. and X. Guo, Molecular and cellular mechanisms of neuroprotection by vascular endothelial growth factor. J Neurosci Res, 2005. 79(1–2): p. 180–4.

    Article  PubMed  CAS  Google Scholar 

  192. Sun, Y., et al., Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: evidence from knockout mice and growth factor administration. Dev Biol, 2006. 289(2): p. 329–35.

    Article  PubMed  CAS  Google Scholar 

  193. Liu, H., et al., Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain, 2006.

    Google Scholar 

  194. Samii, A., J. Unger, and W. Lange, Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci Lett, 1999. 262(3): p. 159–62.

    Article  PubMed  CAS  Google Scholar 

  195. Schratzberger, P., et al., Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med, 2000. 6(4): p. 405–13.

    Article  PubMed  CAS  Google Scholar 

  196. Schratzberger, P., et al., Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest, 2001. 107(9): p. 1083–92.

    Article  PubMed  CAS  Google Scholar 

  197. Wang, Y., et al., VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain, 2005. 128(Pt 1): p. 52–63.

    Google Scholar 

  198. Simovic, D., et al., Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol, 2001. 58(5): p. 761–8.

    Article  PubMed  CAS  Google Scholar 

  199. Rowland, L.P. and N.A. Shneider, Amyotrophic lateral sclerosis. N Engl J Med, 2001. 344(22): p. 1688–700.

    Article  PubMed  CAS  Google Scholar 

  200. Gurney, M.E., et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science, 1994. 264(5166): p. 1772–5.

    Article  PubMed  CAS  Google Scholar 

  201. Oosthuyse, B., et al., Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet, 2001. 28(2): p. 131–8.

    Article  PubMed  CAS  Google Scholar 

  202. Bogaert, E., et al., Vascular endothelial growth factor in amyotrophic lateral sclerosis and other neurodegenerative diseases. Muscle Nerve, 2006. 34(4): p. 391–405.

    Article  PubMed  CAS  Google Scholar 

  203. Lambrechts, D., et al., VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet, 2003. 34(4): p. 383–94.

    Article  PubMed  CAS  Google Scholar 

  204. Carmeliet, P. and E. Storkebaum, Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol, 2002. 13(1): p. 39–53.

    Article  PubMed  CAS  Google Scholar 

  205. Lin, C.L., et al., Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron, 1998. 20(3): p. 589–602.

    Article  PubMed  CAS  Google Scholar 

  206. Azzouz, M., et al., VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature, 2004. 429(6990): p. 413–7.

    Article  PubMed  CAS  Google Scholar 

  207. Lambrechts, D. and P. Carmeliet, VEGF at the neurovascular interface: Therapeutic implications for motor neuron disease. Biochim Biophys Acta, 2006.

    Google Scholar 

  208. Sopher, B.L., et al., Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron, 2004. 41(5): p. 687–99.

    Article  PubMed  CAS  Google Scholar 

  209. Del Bo, R., et al., Vascular endothelial growth factor gene variability is associated with increased risk for AD. Ann Neurol, 2005. 57(3): p. 373–80.

    Article  PubMed  CAS  Google Scholar 

  210. Chapuis, J., et al., Association study of the vascular endothelial growth factor gene with the risk of developing Alzheimer’s disease. Neurobiol Aging, 2006. 27(9): p. 1212–5.

    Article  PubMed  CAS  Google Scholar 

  211. Yasuhara, T., et al., Neurorescue effects of VEGF on a rat model of Parkinson’s disease. Brain Res, 2005. 1053(1–2): p. 10–8.

    Article  PubMed  CAS  Google Scholar 

  212. Kastrup, J., et al., Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris A randomized double-blind placebo-controlled study: the Euroinject One trial. J Am Coll Cardiol, 2005. 45(7): p. 982–8.

    Article  PubMed  CAS  Google Scholar 

  213. Kim, H.J., et al., Vascular endothelial growth factor-induced angiogenic gene therapy in patients with peripheral artery disease. Exp Mol Med, 2004. 36(4): p. 336–44.

    PubMed  CAS  Google Scholar 

  214. Bielenberg, D.R., et al., Neuropilins in neoplasms: expression, regulation, and function. Exp Cell Res, 2006. 312(5): p. 584–93.

    Article  PubMed  CAS  Google Scholar 

  215. Heroult, M., F. Schaffner, and H.G. Augustin, Eph receptor and ephrin ligand-mediated interactions during angiogenesis and tumor progression. Exp Cell Res, 2006. 312(5): p. 642–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Zacchigna, S., de Almodovar, C.R., Lafuste, P., Carmeliet, P. (2007). Vascular and Neuronal Development: Intersecting Parallelisms and rossroads. In: Deindl, E., Kupatt, C. (eds) Therapeutic Neovascularization–Quo Vadis?. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5955-8_9

Download citation

Publish with us

Policies and ethics