Skip to main content

The Strengths and Weaknesses of VEGF Adenovirus-Driven Angiogenesis

  • Chapter

Abstract

Viral vectors are essential for effective transgene expression in vivo. Revascularisation therapies of ischemic tissues with adenoviruses, the most commonly used vectors for gene therapy trials, encoding angiogenic growth factors remain an intriguing option for patients who cannot be treated with conventional revascularisation therapies. Adenoviruses yield very high, but transient, gene expression and are very effective in preclinical angiogenic gene therapy trials. Studies of angiogenic growth factors using adenoviral vectors in rabbit skeletal muscle have shown that even 30-fold increases in muscle perfusion can be achieved. Such increases have not been reported with any other vector or transfection technique. In clinical trials adenoviruses have been well tolerated and safe. However, only a very few positive results on clinical endpoints have been reported. In this chapter we summarise basic knowledge about adenoviruses, their strengths and weaknesses, and discuss how the strengths of adenoviruses could be better exploited to achieve positive results in future clinical trials

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ginsberg HS. Adenoviruses. Am J Clin Pathol. 1972;57:771–776.

    PubMed  CAS  Google Scholar 

  2. Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med. 2003;9:694–701.

    Article  PubMed  CAS  Google Scholar 

  3. Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res. 2003;92:1098–1106.

    Article  PubMed  CAS  Google Scholar 

  4. Rissanen TT, Korpisalo P, Markkanen JE, Liimatainen T, Orden MR, Kholova I et al. Blood flow remodels growing vasculature during vascular endothelial growth factor gene therapy and determines between capillary arterialization and sprouting angiogenesis. Circulation. 2005;20;112: 3937–3946.

    Article  CAS  Google Scholar 

  5. Puumalainen AM, Vapalahti M, Agrawal RS, Kossila M, Laukkanen J, Lehtolainen P et al. beta-galactosidase gene transfer to human malignant glioma in vivo using replication-deficient retroviruses and adenoviruses. Hum Gene Ther. 1998;9:1769–1774.

    PubMed  CAS  Google Scholar 

  6. Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A. 1997;94: 3352–3356.

    Article  PubMed  CAS  Google Scholar 

  7. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell. 1993;73:309–319.

    Article  PubMed  CAS  Google Scholar 

  8. Dechecchi MC, Tamanini A, Bonizzato A, Cabrini G. Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology. 2000;268:382–390.

    Article  PubMed  CAS  Google Scholar 

  9. Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA. Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J. 1997;16:2294–2306.

    Article  PubMed  CAS  Google Scholar 

  10. Hiltunen MO, Laitinen M, Turunen MP, Jeltsch M, Hartikainen J, Rissanen TT et al. Intravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Circulation. 2000;102:2262–2268.

    PubMed  CAS  Google Scholar 

  11. Rutanen J, Turunen AM, Teittinen M, Rissanen TT, Heikura T, Koponen JK et al. Gene transfer using the mature form of VEGF-D reduces neointimal thickening through nitric oxide-dependent mechanism. Gene Ther. 2005;12:980–987.

    Article  PubMed  CAS  Google Scholar 

  12. Leppanen O, Rutanen J, Hiltunen MO, Rissanen TT, Turunen MP, Sjoblom T et al. Oral imatinib mesylate (STI571/gleevec) improves the efficacy of local intravascular vascular endothelial growth factor-C gene transfer in reducing neointimal growth in hypercholesterolemic rabbits. Circulation. 2004;109:1140–1146.

    Article  PubMed  CAS  Google Scholar 

  13. Laitinen M, Mäkinen K, Manninen H, Matsi P, Kossila M, Agrawal RS et al. Adenovirus-mediated gene transfer to lower limb artery of patients with chronic critical leg ischemia. Hum Gene Ther. 1998;9:1481–1486.

    Article  PubMed  CAS  Google Scholar 

  14. Volpers C, Kochanek S. Adenoviral vectors for gene transfer and therapy. J Gene Med. 2004;6 Suppl 1:S164–S171.

    Article  PubMed  CAS  Google Scholar 

  15. Nalbantoglu J, Pari G, Karpati G, Holland PC. Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Hum Gene Ther. 1999;10:1009–1019.

    Article  PubMed  CAS  Google Scholar 

  16. Vajanto I, Rissanen TT, Rutanen J, Hiltunen MO, Tuomisto TT, Arve K et al. Evaluation of angiogenesis and side effects in ischemic rabbit hindlimbs after intramuscular injection of adenoviral vectors encoding VEGF and LacZ. J Gene Med. 2002;4:371–380.

    Article  PubMed  CAS  Google Scholar 

  17. Rutanen J, Rissanen TT, Markkanen JE, Gruchala M, Silvennoinen P, Kivela A et al. Adenoviral Catheter-Mediated Intramyocardial Gene Transfer Using the Mature Form of Vascular Endothelial Growth Factor -D Induces Transmural Angiogenesis in Porcine Heart. Circulation. 2004;109: 1029–1035.

    Article  PubMed  CAS  Google Scholar 

  18. Poliakova L, Kovesdi I, Wang X, Capogrossi MC, Talan M. Vascular permeability effect of adenovirus-mediated vascular endothelial growth factor gene transfer to the rabbit and rat skeletal muscle. J Thorac Cardiovasc Surg. 1999;118:339–347.

    Article  PubMed  CAS  Google Scholar 

  19. Thirion C, Lochmuller H, Ruzsics Z, Boelhauve M, Konig C, Thedieck C et al. Adenovirus vectors based on human adenovirus type 19a have high potential for human muscle-directed gene therapy. Hum Gene Ther. 2006;17:193–205.

    Article  PubMed  CAS  Google Scholar 

  20. Sinnreich M, Shaw CA, Pari G, Nalbantoglu J, Holland PC, Karpati G. Localization of coxsackie virus and adenovirus receptor (CAR) in normal and regenerating human muscle. Neuromuscul Disord. 2005;15:541–548.

    Article  PubMed  CAS  Google Scholar 

  21. Hedman M, Hartikainen J, Syvanne M, Stjernvall J, Hedman A, Kivela A et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation. 2003;107: 2677–2683.

    Article  PubMed  CAS  Google Scholar 

  22. Makinen K, Manninen H, Hedman M, Matsi P, Mussalo H, Alhava E et al. Increased Vascularity Detected by Digital Subtraction Angiography after VEGF Gene Transfer to Human Lower Limb Artery: A Randomized, Placebo-Controlled, Double-Blinded Phase II Study. Mol Ther. 2002;6:127–133.

    Article  PubMed  CAS  Google Scholar 

  23. Wirth T, Hedman M, Mäkinen K, Manninen H, Immonen A, Vapalahti M et al. Safety Profile of Plasmid/Liposomes and Virus Vectors in Clinical Gene Therapy. Current Drug Safety. 2006;1: 253–257.

    CAS  PubMed  Google Scholar 

  24. Chen P, Kovesdi I, Bruder JT. Effective repeat administration with adenovirus vectors to the muscle. Gene Ther. 2000;7:587–595.

    Article  PubMed  CAS  Google Scholar 

  25. Alba R, Bosch A, Chillon M. Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther. 2005;12Suppl 1:S18–27.:S18–S27.

    Google Scholar 

  26. Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J. 2002;21:1939–1947.

    Article  PubMed  CAS  Google Scholar 

  27. Arsic N, Zentilin L, Zacchigna S, Santoro D, Stanta G, Salvi A et al. Induction of functional neovascularization by combined VEGF and angiopoietin-1 gene transfer using AAV vectors. Mol Ther. 2003;7:450–459.

    Article  PubMed  CAS  Google Scholar 

  28. Ylä-Herttuala, S., Rissanen, T., Vajanto, I., Hartikainen, J. Vascular endothelial growth factors – biology and current status of clinical applications in cardiovascular medicine. Journal of the American Cardiology of College. 2007. Ref Type: In Press

    Google Scholar 

  29. Zaiss AK, Muruve DA. Immune responses to adeno-associated virus vectors. Curr Gene Ther. 2005;5:323–331.

    Article  PubMed  CAS  Google Scholar 

  30. Mangeat B, Trono D. Lentiviral vectors and antiretroviral intrinsic immunity. Hum Gene Ther. 2005;16:913–920.

    Article  PubMed  CAS  Google Scholar 

  31. Mäkinen, K., Laitinen, M., Manninen, H., Matsi, P., Alhava, E., Ylä-Herttuala, S. Catheter-mediated VEGF gene transfer to human lower limb arteries after PTA. Circulation 100(18), I-770. 2-11-1999.

    Google Scholar 

  32. Rajagopalan S, Shah M, Luciano A, Crystal R, Nabel EG. Adenovirus-mediated gene transfer of vegf(121) improves lower-extremity endothelial function and flow reserve. Circulation. 2001;104:753–755.

    PubMed  CAS  Google Scholar 

  33. Rajagopalan S, Trachtenberg J, Mohler E, Olin J, McBride S, Pak R et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the vascular endothelial growth factor cDNA (CI-1023) to patients with claudication. Am J Cardiol. 2002;90:512–516.

    Article  PubMed  CAS  Google Scholar 

  34. Crystal RG, Harvey BG, Wisnivesky JP, O’Donoghue KA, Chu KW, Maroni J et al. Analysis of risk factors for local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of comorbid conditions. Hum Gene Ther. 2002;13:65–100.

    Article  PubMed  CAS  Google Scholar 

  35. Stewart DJ, Hilton JD, Arnold JM, Gregoire J, Rivard A, Archer SL et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther. 2006.

    Google Scholar 

  36. Rajagopalan S, Mohler ER, III, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation. 2003;108:1933–1938.

    Article  PubMed  CAS  Google Scholar 

  37. Rissanen TT, Markkanen JE, Arve K, Rutanen J, Kettunen MI, Vajanto I et al. Fibroblast growth factor-4 induces vascular permeability, angiogenesis, and arteriogenesis in a rabbit hind limb ischemia model. FASEB J. 2003;17:100–102.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Korpisalo, P., Rissanen, T.T., Ylä-Herttuala, S. (2007). The Strengths and Weaknesses of VEGF Adenovirus-Driven Angiogenesis. In: Deindl, E., Kupatt, C. (eds) Therapeutic Neovascularization–Quo Vadis?. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5955-8_2

Download citation

Publish with us

Policies and ethics