Skip to main content

Nitric Oxide Synthase and Cyclooxygenase Interactions in Cartilage and Meniscus

Relationships to joint physiology, arthritis, and tissue repair

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 42))

Rheumatoid arthritis and osteoarthritis are painful and debilitating diseases with complex pathophysiology. There is growing evidence that pro-inflammatory cytokines (e.g., interleukin-1 and tumor necrosis factor alpha) and mediators (e.g., prostaglandins, leukotrienes, and nitric oxide) play critical roles in the development and perpetuation of tissue inflammation and damage in joint tissues such as articular cartilage and meniscus. While earlier studies have generally focused on cells of the synovium (especially macrophages), there is increasing evidence that chondrocytes and meniscal cells actively contribute to inflammatory processes. In particular, it is now apparent that mechanical forces engendered by joint loading are transduced to biological signals at the cellular level and that these signals modulate gene expression and biochemical processes. Here we give an overview of the interplay of cytokines and mechanical stress in the production of cyclooxygenases and prostaglandins; lipoxygenases and leukotrienes; and nitric oxide synthases and nitric oxide in arthritis, with particular focus on the interactions of these pathways in articular cartilage and meniscus

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amin AR, Dave M, Attur M, Abramson SB. COX-2, NO, and cartilage damage and repair. Curr Rheumatol Rep 2: 447–453, 2000.

    PubMed  CAS  Google Scholar 

  2. Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology 39: 237–246, 2002.

    PubMed  CAS  Google Scholar 

  3. Goldring MB. Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep 2: 459–465, 2000.

    PubMed  CAS  Google Scholar 

  4. Guilak F, Fermor B, Keefe FJ, Kraus VB, Olson SA, Pisetsky DS,Setton LA, Weinberg JB. The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop Relat Res: 17–26, 2004.

    Google Scholar 

  5. Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev 57: 217–252, 2005.

    PubMed  CAS  Google Scholar 

  6. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. New England Journal of Medicine 329: 2002–2012, 1993.

    PubMed  CAS  Google Scholar 

  7. Magrinat G, Mason SN, Shami PJ, Weinberg JB. Nitric oxide modulation of human leukemia cell differentiation and gene expression. Blood 80: 1880–1884, 1992.

    PubMed  CAS  Google Scholar 

  8. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. [Review]. Science 258: 1898–1902, 1992.

    PubMed  CAS  Google Scholar 

  9. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6: 150–166, 2005.

    PubMed  CAS  Google Scholar 

  10. Palmer RM, Hickery MS, Charles IG, Moncada S, Bayliss MT. Induction of nitric oxide synthase in human chondrocytes. BBRC 193: 398–405, 1993.

    PubMed  CAS  Google Scholar 

  11. Nathan C, Xie Q-W. Regulation of biosynthesis of nitric oxide. JBC 269: 13725–13728, 1994.

    CAS  Google Scholar 

  12. Spitsin SV, Koprowski H, Michaels FH. Characterization and functional analysis of the human inducible nitric oxide synthase gene promoter. Molecular Medicine 2: 226–235, 1996.

    PubMed  CAS  Google Scholar 

  13. Devera ME, Shapiro RA, Nussler AK, Mudgett JS, Simmons RL, Morris SM, Billiar TR, Geller DA. Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines ? initial analysis of the human NOS2 promoter. Proceedings of the National Academy of Sciences of the United States of America 93: 1054–1059, 1996.

    CAS  Google Scholar 

  14. Taylor BS, Devera ME, Ganster RW, Wang Q, Shapiro RA, Morris SM, Billiar TR, Geller DA. Multiple NF-kappa-B enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. Journal of Biological Chemistry 273: 15148–15156, 1998.

    PubMed  CAS  Google Scholar 

  15. Chartrain NA, Geller DA, Koty PP, Sitrin NF, Nussler AK, Hoffman EP, Billiar TR, Hutchinson NI, Mudgett JS. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem 269: 6765–6772, 1994.

    PubMed  CAS  Google Scholar 

  16. Kleinert H, Wallerath T, Fritz G, Ihrig-Biedert I, Rodriguez-Pascual F, Geller DA, Forstermann U. Cytokine induction of NO synthase II in human DLD-1 cells: roles of the JAK-STAT, AP-1 and NF-kappaB-signaling pathways. Br J Pharmacol 125: 193–201, 1998.

    PubMed  CAS  Google Scholar 

  17. Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T, Green SJ, Mak TW, Taniguchi T, Vilcek J. Requirement for trnascription factor IRF-1 in NO synthase induction in macrophages. Science 263: 1612–1615, 1994.

    PubMed  CAS  Google Scholar 

  18. Gao JJ, Morrison DC, Parmely TJ, Russell SW, Murphy WJ. An Interferon-Gamma-Activated Site (GAS) Is Necessary For Full Expression Of the Mouse Inos Gene In Response to Interferon-Gamma and Lipopolysaccharide. Journal of Biological Chemistry 272: 1226–1230, 1997.

    PubMed  CAS  Google Scholar 

  19. Gao JJ, Filla MB, Fultz MJ, Vogel SN, Russell SW, Murphy WJ. Autocrine/paracrine IFN-alpha/beta mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. J Immunol 161: 4803–4810, 1998.

    PubMed  CAS  Google Scholar 

  20. Chan ED, Winston BW, Uh ST, Wynes MW, Rose DM, Riches DWH. Evaluation of the role of mitogen-activated protein kinases in the expression of inducible nitric oxide synthase by IFN-gamma and TNF-alpha in mouse macrophages. J Immunol 162: 415–422, 1999.

    PubMed  CAS  Google Scholar 

  21. Chen BC, Chen YH, Lin WW. Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunology 97: 124–129, 1999.

    PubMed  CAS  Google Scholar 

  22. Singh K, Balligand JL, Fischer TA, Smith TW, Kelly RA. Regulation Of Cytokine-Inducible Nitric Oxide Synthase In Cardiac Myocytes and Microvascular Endothelial Cells - Role Of Extracellular Signal-Regulated Kinases 1 and 2 (Erk1/Erk2) and Stat1-Alpha. Journal of Biological Chemistry 271: 1111–1117, 1996.

    PubMed  CAS  Google Scholar 

  23. Searles CD, Miwa Y, Harrison DG, Ramasamy S. Posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circulation Research 85: 588–595, 1999.

    PubMed  CAS  Google Scholar 

  24. Gross SS, Levi R. Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. Journal of Biological Chemistry 267: 25722–25729, 1992.

    PubMed  CAS  Google Scholar 

  25. Lee J, Ryu H, Ferrante RJ, Morris SM Jr, Ratan RR. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci USA 100: 4843–4848, 2003.

    PubMed  CAS  Google Scholar 

  26. Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyond. Biochem J 336 (Pt 1): 1–17, 1998.

    PubMed  CAS  Google Scholar 

  27. Nicholson B, Manner CK, Kleeman J, MacLeod CL. Sustained nitric oxide production in macrophages requires the arginine transporter CAT2. Journal of Biological Chemistry 276: 15881–15885, 2001.

    PubMed  CAS  Google Scholar 

  28. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 447: 532–542, 2004.

    PubMed  CAS  Google Scholar 

  29. Mori M, Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun 275: 715–719, 2000.

    PubMed  CAS  Google Scholar 

  30. Hammermann R, Dreiig MDM, Dreissig MDM, Mossner J, Fuhrmann M, Berrino L, Gothert M, Racke K. Nuclear factor-kappa B mediates simultaneous induction of inducible nitric-oxide synthase and up-regulation of the cationic amino acid transporter CAT-2B in rat alveolar macrophages. Mol Pharmacol 58: 1294–1302, 2000.

    PubMed  CAS  Google Scholar 

  31. Barbul A. Arginine: biochemistry, physiology, and therapeutic implications. JPEN J Parenter Enteral Nutr 10: 227–238, 1986.

    PubMed  CAS  Google Scholar 

  32. Boger RH, Bode-Boger SM. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol 41: 79–99, 2001.

    PubMed  CAS  Google Scholar 

  33. Merimee TJ, Rabinowtitz D, Fineberg SE. Arginine-initiated release of human growth hormone. Factors modifying the response in normal man. N Engl J Med 280: 1434–1438, 1969.

    PubMed  CAS  Google Scholar 

  34. Merimee TJ, Rabinowitz D, Riggs L, Burgess JA, Rimoin DL, McKusick VA. Plasma growth hormone after arginine infusion. Clinical experiences. N Engl J Med 276: 434–439, 1967.

    PubMed  CAS  Google Scholar 

  35. Boger RH, Bode-Boger SM, Thiele W, Creutzig A, Alexander K, Frolich JC. Restoring vascular nitric oxide formation by L-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease. J Am Coll Cardiol 32: 1336–1344, 1998.

    PubMed  CAS  Google Scholar 

  36. Ceremuzynski L, Chamiec T, Herbaczynska-Cedro K. Effect of supplemental oral L-arginine on exercise capacity in patients with stable angina pectoris. Am J Cardiol 80: 331–333, 1997.

    PubMed  CAS  Google Scholar 

  37. Lerman A, Burnett JC Jr, Higano ST, McKinley LJ, Holmes DR Jr. Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation 97: 2123–2128, 1998.

    PubMed  CAS  Google Scholar 

  38. Grasemann H, Gartig SS, Wiesemann HG, Teschler H, Konietzko N, Ratjen F. Effect of L-arginine infusion on airway NO in cystic fibrosis and primary ciliary dyskinesia syndrome. Eur Respir J 13: 114–118, 1999.

    PubMed  CAS  Google Scholar 

  39. Morris CR, Kuypers FA, Larkin S, Sweeters N, Simon J, Vichinsky EP, Styles LA. Arginine therapy: a novel strategy to induce nitric oxide production in sickle cell disease. Br J Haematol 111: 498–500, 2000.

    PubMed  CAS  Google Scholar 

  40. Morris CR, Kuypers FA, Larkin S, Vichinsky EP, Styles LA. Patterns of arginine and nitric oxide in patients with sickle cell disease with vaso-occlusive crisis and acute chest syndrome. Journal of Pediatric Hematology Oncology 22: 515–520, 2000.

    CAS  Google Scholar 

  41. Iyer R, Jenkinson CP, Vockley JG, Kern RM, Grody WW, Cederbaum S. The human arginases and arginase deficiency. J Inherit Metab Dis 21 Suppl 1: 86–100, 1998.

    PubMed  CAS  Google Scholar 

  42. Jenkinson CP, Grody WW, Cederbaum SD. Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol 114: 107–132, 1996.

    PubMed  CAS  Google Scholar 

  43. Shi O, Kepka-Lenhart D, Morris SM Jr, O’Brien WE. Structure of the murine arginase II gene. Mamm Genome 9: 822–824, 1998.

    PubMed  CAS  Google Scholar 

  44. Munder M, Eichmann K, Moran JM, Centeno F, Soler G, Modolell M. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 163: 3771–3777, 1999.

    PubMed  CAS  Google Scholar 

  45. Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, Pearce EJ, Wynn TA. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: Granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol 167: 6533–6544, 2001.

    PubMed  CAS  Google Scholar 

  46. Munder M, Eichmann K, Modolell M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160: 5347–5354, 1998.

    PubMed  CAS  Google Scholar 

  47. Wei LH, Wu G, Morris SM Jr, Ignarro LJ. Elevated arginase I expression in rat aortic smooth muscle cells increases cell proliferation. Proc Natl Acad Sci USA 98: 9260–9264, 2001.

    PubMed  CAS  Google Scholar 

  48. Wei LH, Jacobs AT, Morris SM, Ignarro LJ. IL-4 and IL-13 upregulate arginase I expression by cAMP and JAK/STAT6 pathways in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology 279: C248-C256, 2000.

    PubMed  CAS  Google Scholar 

  49. Modolell M, Corraliza IM, Link F, Soler G, Eichmann K. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol 25: 1101–1104, 1995.

    PubMed  CAS  Google Scholar 

  50. Dal-Pizzol F. Alternative activated macrophage: A new key for systemic inflammatory response syndrome and sepsis treatment? Crit Care Med 32: 1971–1972, 2004.

    PubMed  Google Scholar 

  51. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 3: 23–35, 2003.

    PubMed  CAS  Google Scholar 

  52. Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, Hassanzadeh Gh G. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol 71: 597–602, 2002.

    PubMed  CAS  Google Scholar 

  53. Vincendeau P, Gobert AP, Daulouede S, Moynet D, Mossalayi MD. Arginases in parasitic diseases. Trends Parasitol 19: 9–12, 2003.

    PubMed  CAS  Google Scholar 

  54. Corraliza I, Moncada S. Increased expression of arginase II in patients with different forms of arthritis. Implications of the regulation of nitric oxide. J Rheumatol 29: 2261–2265, 2002.

    PubMed  CAS  Google Scholar 

  55. Appleton I, Tomlinson A, Willoughby DA. Induction of cyclo-oxygenase and nitric oxide synthase in inflammation. Adv Pharmacol 35: 27–78, 1996.

    PubMed  CAS  Google Scholar 

  56. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. Journal of Biological Chemistry 271: 33157–33160, 1996.

    PubMed  CAS  Google Scholar 

  57. Marnett LJ, Wright TL, Crews BC, Tannenbaum SR, Marrow JD. Regulation of prostaglandin biosynthesis by nitric oxide is revealed by targeted deletion of inducible nitric-oxide synthase. Journal of Biological Chemistry 275: 13427–13430, 2000.

    PubMed  CAS  Google Scholar 

  58. Gilroy DW, Colville-Nash PR. New insights into the role of COX 2 in inflammation. Journal of Molecular Medicine-Jmm 78: 121–129, 2000.

    CAS  Google Scholar 

  59. Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, Simmons DL. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 99: 13926–13931, 2002.

    PubMed  CAS  Google Scholar 

  60. Vane JR, Botting RM. Mechanism of action of antiinflammatory drugs. Int J Tissue React 20: 3–15, 1998.

    PubMed  CAS  Google Scholar 

  61. Abramson SB. The role of COX-2 produced by cartilage in arthritis. Osteoarthritis & Cartilage 7: 380–381, 1999.

    CAS  Google Scholar 

  62. Geng Y, Blanco FJ, Cornelisson M, Lotz M. Regulation of cyclooxygenase-2 expression in normal human articular chondrocytes. J Immunol 155: 796–801, 1995.

    PubMed  CAS  Google Scholar 

  63. Lyons-Giordana B, Pratta M, Galbraith W, Davis G, Arner E. Interleukin-1 differentially modulates chondrocyte expression of cyclooxygenase-2 and phospholipase A2. Exp Cell Res 206: 58, 1993.

    Google Scholar 

  64. Dingle J. Cartilage maintenance in osteoarthritis: interaction of cytokines, NSAID and prostaglandins in articular cartilage damage and repair. J Rheumatol Suppl 28: 30, 1991.

    PubMed  CAS  Google Scholar 

  65. Di Battista JA, Dore S, Martel-Pelletier J, Pelletier JP. Prostaglandin E2 stimulates incorporation of proline into collagenase digestible proteins in human articular chondrocytes: identification of an effector autocrine loop involving insulin-like growth factor I. Mol Cell Endocrinol 123: 27–35, 1996.

    PubMed  Google Scholar 

  66. Goldring M, Suen L-F, Yamin R, Lai W-F. Regulation of collagen gene expression by prostaglandins and interleukin-1beta in cultured chondrocytes and fibroblasts. Am J Therapeutics 3:9–16, 1996.

    Google Scholar 

  67. Lowe GN, Fu YH, McDougall S, Polendo R, Williams A, Benya PD, Hahn TJ. Effects of prostaglandins on deoxyribonucleic acid and aggrecan synthesis in the RCJ 3.1C5.18 chondrocyte cell line: role of second messengers. Endocrinology 137: 2208–2216, 1996.

    PubMed  CAS  Google Scholar 

  68. Di Battista JA, Dore S, Morin N, He Y, Pelletier JP, Martel-Pelletier J. Prostaglandin E2 stimulates insulin-like growth factor binding protein-4 expression and synthesis in cultured human articular chondrocytes: possible mediation by Ca(++)-calmodulin regulated processes. J Cell Biochem 65: 408–419, 1997.

    PubMed  Google Scholar 

  69. Di Battista JA, Martel-Pelletier J, Fujimoto N, Obata K, Zafarullah M, Pelletier JP. Prostaglandins E2 and E1 inhibit cytokine-induced metalloprotease expression in human synovial fibroblasts. Mediation by cyclic-AMP signalling pathway. Lab Invest 71: 270–278, 1994.

    Google Scholar 

  70. Blanco FJ, Lotz M IL-1-induced nitric oxide inhibits chondrocyte proliferation via PGE2. Exp Cell Res 218: 319–325, 1995.

    PubMed  CAS  Google Scholar 

  71. Knudsen PJ, Dinarello CA, Strom TB. Prostaglandins posttranscriptionally inhibit monocyte expression of interleukin 1 activity by increasing intracellular cyclic adenosine monophosphate. Journal of Immunology 137: 3189–3194, 1986.

    CAS  Google Scholar 

  72. Milano S, Arcoleo F, Dieli M, D’Agostino R, D’Agostino P, De Nucci G, Cillari E. Prostaglandin E2 regulates inducible nitric oxide synthase in the murine macrophage cell line J774. Prostaglandins 49: 105–115, 1995.

    PubMed  CAS  Google Scholar 

  73. Studer R, Jaffurs D, Stefanovic-Racic M, Robbins PD, Evans CH. Nitric oxide in osteoarthritis. Osteoarthritis & Cartilage 7: 377–379, 1999.

    CAS  Google Scholar 

  74. Clancy RM, Abramson SB. Nitric oxide: A novel mediator of inflammation. Proceedings of the Society of Experimental Biology and Medicine 210: 93–101, 1995.

    CAS  Google Scholar 

  75. Clancy R, Varenika B, Huang WQ, Ballou L, Attur M, Amin AR, Abramson SB. Nitric oxide synthase/COX cross-talk: Nitric oxide activates COX-1 but inhibits COX-2-derived prostaglandin production. J Immunol 165: 1582–1587, 2000.

    PubMed  CAS  Google Scholar 

  76. Benton H, Tyler J. Inhibition of cartilage proteoglycan synthesis by interleukin-1. Biochem Biophys Res Comm 145: 421–428, 1988.

    Google Scholar 

  77. Anderson GD, Hauser SD, McGarity KL, Bremer ME, Isakson PC, Gregory SA. Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin-6 in rat adjuvant arthritis. Journal of Clinical Investigation 97: 2672–2679, 1996.

    PubMed  CAS  Google Scholar 

  78. Bombardieri S, Cattani P, Giabattoni G, Di Munno O, Paero G, Patrono C, Pinca E, Pugliese F. The synovial prostaglandin system in chronic inflammatory arthritis: differential effects of steroidal and non-steroidal antiinflammatory drugs. Br J Pharmacol 73: 893–901, 1981.

    PubMed  CAS  Google Scholar 

  79. Crofford LJ, Wilder RL, Ristimaki AP, Sano H, Remmers EF, Epps HR, Hla T. Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues: effects of interleukin-1beta, phorbol ester, and corticosteroids. J Clin Inv 93: 1095–1101, 1994.

    CAS  Google Scholar 

  80. Davies P, Bailey PJ, Goldenberg MM, Ford-Hutchinson AW. The role of arachidonic acid oxygenation products in pain and inflammation. Annu Rev Immunol 2: 335–357, 1984.

    PubMed  CAS  Google Scholar 

  81. Engelhardt G, Homma D, Schlegel K, Utzmann R, Schnitzler C. Anti-inflammatory, analgesic, antipyretic and related properties of meloxicam, a new non-steroidal anti-inflammatory agent with favourable gastrointestinal tolerance. Inflamm Res 44: 423–433, 1995.

    PubMed  CAS  Google Scholar 

  82. Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, AndersonGd, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J Med Chem 40: 1347–1365, 1997.

    PubMed  CAS  Google Scholar 

  83. Topol EJ. Arthritis medicines and cardiovascular events–“house of coxibs”. JAMA 293: 366–368, 2005.

    PubMed  CAS  Google Scholar 

  84. Tetsuka T, Daphna-Iken D, Srivastava SK, Baier LD, DuMaine J, Morrison AR. Cross-talk between cyclooxygenase and nitric oxide pathways: prostaglandin E2 negatively modulates induction of nitric oxide synthase by interleukin 1. Proc Natl Acad Sci USA 91: 12168–12172, 1994.

    PubMed  CAS  Google Scholar 

  85. Weinberg JB. Nitric oxide synthase 2 and cyclooxygenase 2 interactions in inflammation. Immunol Res 22: 319–341, 2000.

    PubMed  CAS  Google Scholar 

  86. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90: 7240–7244, 1993.

    PubMed  CAS  Google Scholar 

  87. Swierkosz TA, Mitchell JA, Warner TD, Botting RM, Vane JR. Co-induction of nitric oxide synthase and cyclo-oxygenase: interactions between nitric oxide and prostanoids. Br J Pharmacol 114: 1335–1342, 1995.

    PubMed  CAS  Google Scholar 

  88. Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, Willoughby DA. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci USA 91: 2046–2050, 1994.

    PubMed  CAS  Google Scholar 

  89. Salvemini D, Manning PT, Zweifel BS, Seibert K, Connor J, Currie MG, Needleman P, Masferrer JL. Dual inhibition of nitric oxide and prostaglandin production contributes to the anti-inflammatory properties of nitric oxide synthase inhibitors. Journal of Clinical Investigation 96: 301–308, 1995.

    PubMed  CAS  Google Scholar 

  90. Amin AR, Vyas P, Attur M, Leszczynska-Piziak J, Patel IR, Weissmann G, Abramson SB. The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc Natl Acad Sci USA 92: 7926–7930, 1995.

    PubMed  CAS  Google Scholar 

  91. Pang L, Hoult JR. Repression of inducible nitric oxide synthase and cyclooxygenase-2 by prostaglandin E2 and other cyclic AMP stimulants in J774 macrophages [published erratum appears in Biochem Pharmacol 1997 Jun 15;53(12):1945]. Biochem Pharmacol 53: 493–500, 1997.

    PubMed  CAS  Google Scholar 

  92. Marotta P, Sautebin L, Di Rosa M. Modulation of the induction of nitric oxide synthase by eicosanoids in the murine macrophage cell line J774. Br J Pharmacol 107: 640–641, 1992.

    PubMed  CAS  Google Scholar 

  93. Stadler J, Stefanovic-Racic M, Billiar TR, Curran RD, McIntyre LA, Georgescu HI, Simmons RL, Evans CH. Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol 147: 3915–3920, 1991.

    PubMed  CAS  Google Scholar 

  94. Salvemini D, Masferrer JL. Interactions of nitric oxide with cyclooxygenase: in vitro, ex vivo, and in vivo studies. Methods Enzymol 269: 12–25, 1996.

    PubMed  CAS  Google Scholar 

  95. Salvemini D, Manning PT, Zweifel BS, Seibert K, Connor J, Currie MG, Needleman P, Masferrer JL. Dual inhibition of nitric oxide and prostaglandin production contributes to the antiinflammatory properties of nitric oxide synthase inhibitors. J Clin Invest 96: 301–308, 1995.

    PubMed  CAS  Google Scholar 

  96. Lianos EA, Guglielmi K, Sharma M. Regulatory interactions between inducible nitric oxide synthase and eicosanoids in glomerular immune injury. Kidney Int 53: 645–653, 1998.

    PubMed  CAS  Google Scholar 

  97. Ghosh DK, Misukonis MA, Reich C, Pisetsky DS, Weinberg JB Host response to infection: the role of CpG DNA in induction of cyclooxygenase 2 and nitric oxide synthase 2 in murine macrophages. Infect Immun 69: 7703–7710, 2001.

    PubMed  CAS  Google Scholar 

  98. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Fink C, Guilak F. Induction of cyclooxygenase-2 by mechanical stress through a nitric oxide-regulated pathway. Osteoarthritis Cartilage 10: 792–798, 2002.

    PubMed  CAS  Google Scholar 

  99. Tsai AL, Wei C, Kulmacz RJ. Interaction between nitric oxide and prostaglandin H synthase. Arch Biochem Biophys 313: 367–372, 1994.

    PubMed  CAS  Google Scholar 

  100. Kim SF, Huri DA, Snyder SH. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310: 1966–1970, 2005.

    PubMed  CAS  Google Scholar 

  101. Kurosawa H, Fukubayashi T, Nakajuma H. Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clinical Orthopaedics & Related Research 149: 283–290, 1980.

    Google Scholar 

  102. Levy IM, Torzilli PA, Fisch ID. The contribution of the menisci to the stability of the knee. In: Mow VC, Jackson DW, Arnoczky SP, eds. Knee Meniscus: Basic and Clinical Foundations. New York: Raven Press; 1992:107–115.

    Google Scholar 

  103. Baker BE, Peckham AC, Pupparo F, Sanborn JC. Review of meniscal injury and associated sports. Am J Sports Med 13: 1–4, 1985.

    PubMed  CAS  Google Scholar 

  104. Praemer A, Furner S, Rice DP. Musculoskeletal Conditions in the United States. Rosement, IL: American Academy of Orthopaedic Surgeons; 1999.

    Google Scholar 

  105. Fairbank TJ. Knee joint changes after meniscectomy. Journal of Bone and Joint Surgery 30B: 664–670, 1948.

    Google Scholar 

  106. Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis & Rheumatism 41: 687–693, 1998.

    CAS  Google Scholar 

  107. Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clinical Orthopaedics & Related Research: 184–192, 1975.

    Google Scholar 

  108. Radin EL, de Lamotte F, Maquet P. Role of the menisci in the distribution of stress in the knee. Clinical Orthopaedics & Related Research: 290–294, 1984.

    Google Scholar 

  109. McDevitt CA, Webber RJ. The ultrastructure and biochemistry of meniscal cartilage. Clinical Orthopaedics & Related Research: 8–18, 1990.

    Google Scholar 

  110. Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. Clinical Orthopaedics & Related Research: 19–31, 1990.

    Google Scholar 

  111. Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. Journal of Biomechanical Engineering 102: 73–84, 1980.

    PubMed  CAS  Google Scholar 

  112. King D. The healing of semilunar cartilages. J Bone Joint Surg Am 54A: 349, 1936.

    Google Scholar 

  113. Aagaard H, Verdonk R. Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports 9: 134–140, 1999.

    PubMed  CAS  Google Scholar 

  114. Fairbank TJ. Knee joint changes after menisectomy. J Bone Joint Surg 30B: 664–670, 1948.

    Google Scholar 

  115. McNicholas MJ, Rowley DI, McGurty D, Adalberth T, Abdon P, Lindstrand A, Lohmander LS. Total meniscectomy in adolescence. A thirty-year follow-up. J Bone Joint Surg Br 82: 217–221, 2000.

    PubMed  CAS  Google Scholar 

  116. Elliott DM, Guilak F, Vail TP, Wang JY, Setton LA. Tensile properties of articular cartilage are altered by meniscectomy in a canine model of osteoarthritis. Journal of Orthopaedic Research 17: 503–508, 1999.

    PubMed  CAS  Google Scholar 

  117. Bhargava MM, Attia ET, Murrell GA, Dolan MM, Warren RF, Hannafin JA. The effect of cytokines on the proliferation and migration of bovine meniscal cells. American Journal of Sports Medicine 27: 636–643, 1999.

    PubMed  CAS  Google Scholar 

  118. Collier S, Ghosh P. Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthritis & Cartilage 3: 127–138, 1995.

    CAS  Google Scholar 

  119. Guilak F, Ratcliffe A, Lane N, Rosenwasser MP, Mow VC. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. Journal of Orthopaedic Research 12: 474–484, 1994.

    PubMed  CAS  Google Scholar 

  120. Vailas AC, Zernicke RF, Matsuda J, Curwin S, Durivage J. Adaptation of rat knee meniscus to prolonged exercise. Journal of Applied Physiology 60: 1031–1034, 1986.

    PubMed  CAS  Google Scholar 

  121. Djurasovic M, Aldridge JW, Grumbles R, Rosenwasser MP, Howell D, Ratcliffe A. Knee joint immobilization decreases aggrecan gene expression in the meniscus. American Journal of Sports Medicine 26: 460–466, 1998.

    PubMed  CAS  Google Scholar 

  122. Mikic B, Johnson TL, Chhabra AB, Schalet BJ, Wong M, Hunziker EB. Differential effects of embryonic immobilization on the development of fibrocartilaginous skeletal elements. Journal of Rehabilitation Research & Development 37: 127–133, 2000.

    CAS  Google Scholar 

  123. Beaupre GS, Stevens SS, Carter DR. Mechanobiology in the development, maintenance, and degeneration of articular cartilage. J Rehabil Res Dev 37: 145–151, 2000.

    PubMed  CAS  Google Scholar 

  124. Burton-Wurster N, Vernier-Singer M, Farquhar T, Lust G. Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. J Orthop Res 11: 717–729, 1993.

    PubMed  CAS  Google Scholar 

  125. Gray ML, Pizzanelli AM, Grodzinsky AJ, Lee RC. Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res 6: 777–792, 1988.

    PubMed  CAS  Google Scholar 

  126. Palmoski MJ, Brandt KD. Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum 27: 675–681, 1984.

    PubMed  CAS  Google Scholar 

  127. Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD. Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7: 619–636, 1989.

    PubMed  CAS  Google Scholar 

  128. Torzilli PA, Grigiene R. Continuous cyclic load reduces proteoglycan release from articular cartilage. Osteoarthritis Cartilage 6: 260–268, 1998.

    PubMed  CAS  Google Scholar 

  129. Guilak F, Meyer BC, Ratcliffe A, Mow VC. The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthritis & Cartilage 2: 91–101, 1994.

    CAS  Google Scholar 

  130. Guilak F, Sah RL, Setton LA. Physical regulation of cartilage metabolism. In: Mow VC, Hayes WC, eds. Basic Orthopaedic Biomechanics (2nd ed). Philadelphia: Lippincott-Raven; 1997:179–207.

    Google Scholar 

  131. Farquhar T, Xia Y, Mann K, Bertram J, Burton-Wurster N, Jelinski L, Lust G. Swelling and fibronectin accumulation in articular cartilage explants after cyclical impact. J Orthop Res 14: 417–423, 1996.

    PubMed  CAS  Google Scholar 

  132. Das P, Schurman DJ, Smith RL. Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear. J Orthop Res 15: 87–93, 1997.

    PubMed  CAS  Google Scholar 

  133. Imler SM, Vanderploeg EJ, Hunter CJ, Levenston ME. Static and oscillatory compression modulate protein and proteoglycan synthesis by meniscal fibrochondrocytes. Transactions of the Orthopaedic Research Society 26: 552, 2001.

    Google Scholar 

  134. Kim H, Kerr R, Cruz T, Salter R. Effects of continuous motion and immobilization on synovitis and cartilage degradation in an antigen induced arthritis. J Rheumatology 22: 1714, 1995.

    CAS  Google Scholar 

  135. Salter R. THe physiologic basis of continuous passive motion for articular cartilage healing and regeneration. Hand Clin 10: 211, 1994.

    PubMed  CAS  Google Scholar 

  136. Gassner R, Buckley M, Georgescu R, Studer M, Stefanovich-Racic M, Piesco N, Evans C, Agarwal S. Cyclic tensile stress exerts anti-inflammatory actions on chondrocytes by inhibiting inducible nitric oxide synthase. J Immunol 163: 2187, 1999.

    PubMed  CAS  Google Scholar 

  137. Xu Z, Buckley M, Evans C, Agarwal S. Cyclic tensile strain acts as an antagonist of IL1beta actions in chondrocytes. The Journal of Imunology 165: 453–460, 2000.

    CAS  Google Scholar 

  138. LeGrand A, Fermor B, Fink C, Pisetsky DS, Vail TP, Weinberg JB, Guilak F. IL-1, TNF-a and IL-17 induction of inflammatory mediator production by human osteoarthritic knee menisci. Arthritis Rheum 44: 2078–2083, 2001.

    PubMed  CAS  Google Scholar 

  139. Harris ED Jr. Textbook of rheumatology (4th edn). Philadelphia: W.B. Saunders Company; 1993.

    Google Scholar 

  140. Hashimoto S, Takahashi K, Ochs RL, Coutts RD, Amiel D, Lotz M. Nitric oxide production and apoptosis in cells of the meniscus during experimental osteoarthritis. Arthritis Rheum 42: 2123–2131, 1999.

    PubMed  CAS  Google Scholar 

  141. Hughes FJ, Buttery LD, Hukkanen MV, O’Donnell A, Maclouf J, Polak JM. Cytokine-induced prostaglandin E2 synthesis and cyclooxygenase-2 activity are regulated both by a nitric oxide-dependent and -independent mechanism in rat osteoblasts in vitro. Journal of Biological Chemistry 274: 1776–1782, 1999.

    PubMed  CAS  Google Scholar 

  142. Jang D, Murrell GAC. NITRIC OXIDE IN ARTHRITIS [Review]. Free Radical Biology & Medicine 24: 1511–1519, 1998.

    CAS  Google Scholar 

  143. Amin AR, Di Cesare PE, Vyas P, Attur M, Tzeng E, Billiar TR, Stuchin SA, Abramson SB. The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase. J Exp Med 182: 2097–2102, 1995.

    PubMed  CAS  Google Scholar 

  144. Amin AR, Attur M, Patel RN, Thakker GD, Marshall PJ, Rediske J, Stuchin SA, Patel IR, Abramson SB. Superinduction Of Cyclooxygenase-2 Activity In Human Osteoarthritis-Affected Cartilage - Influence Of Nitric Oxide. Journal of Clinical Investigation 99: 1231–1237, 1997.

    PubMed  CAS  Google Scholar 

  145. Clancy RM, Amin AR, Abramson SB. The role of nitric oxide in inflammation and immunity [Review]. Arthritis & Rheumatism 41: 1141–1151, 1998.

    CAS  Google Scholar 

  146. Evans CH, Stefanovic-Racic M, Lancaster JR Jr. Nitric oxide and its role in orthopaedic disease [Review]. Clinical Orthopaedics & Related Research 312: 275–294, 1995.

    Google Scholar 

  147. Grabowski PS, Wright PK, Vanthof RJ, Helfrich MH, Ohshima H, Ralston SH. Immunolocalization Of Inducible Nitric Oxide Synthase In Synovium and Cartilage In Rheumatoid Arthritis and Osteoarthritis. British Journal of Rheumatology 36: 651–655, 1997.

    PubMed  CAS  Google Scholar 

  148. Shalom-Barak T, Quach J, Lotz M. Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-kappaB. J Biol Chem 273: 27467–27473, 1998.

    PubMed  CAS  Google Scholar 

  149. Kwon S, George SC. Synergistic cytokine-induced nitric oxide production in human alveolar epithelial cells. Nitric Oxide 3: 348–357, 1999.

    PubMed  CAS  Google Scholar 

  150. Hennerbichler A, Moutos FT, Hennerbichler D, Weinberg JB, Guilak F. Integrative repair of the inner and outer regions of the meniscus in vitro. Am J Sports Med, in Press, 2006.

    Google Scholar 

  151. Dinarello CA. The many worlds of reducing interleukin-1. Arthritis Rheum 52: 1960–1967, 2005.

    PubMed  CAS  Google Scholar 

  152. Kastner DL. Hereditary periodic fever syndromes. Hematology 2005—American Society of Hematology Education Book: 74–81, 2005.

    Google Scholar 

  153. Reich K, Nestle FO, Papp K, Ortonne JP, Evans R, Guzzo C, Li S, Dooley LT, Griffiths CE. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet 366: 1367–1374, 2005.

    PubMed  CAS  Google Scholar 

  154. Weaver AL. The impact of new biologicals in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 43 Suppl 3: iii17-iii23, 2004.

    Google Scholar 

  155. Perkins DJ, St Clair EW, Misukonis MA, Weinberg JB. Reduction of NOS2 overexpression in rheumatoid arthritis patients treated with anti-tumor necrosis factor alpha monoclonal antibody (cA2). Arthritis Rheum 41: 2205–2210, 1998.

    PubMed  CAS  Google Scholar 

  156. St. Clair EW, Wilkinson WE, Lang T, Sanders L, Misukonis MA, Gilkeson GS, Pisetsky DS, Granger DL, Weinberg JB. Increased expression of blood mononuclear cell nitric oxide synthase type 2 in rheumatoid arthritis patients. Journal of Experimental Medicine 184: 1173–1178, 1996.

    PubMed  CAS  Google Scholar 

  157. Chevalier X, Giraudeau B, Conrozier T, Marliere J, Kiefer P, Goupille P. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J Rheumatol 32: 1317–1323, 2005.

    PubMed  CAS  Google Scholar 

  158. Clancy RM, Abramson SB. Nitric oxide—a novel mediator of inflammation [Review]. Proceedings of the Society of Experimental Biology and Medicine 210: 93–101, 1995.

    CAS  Google Scholar 

  159. Ialenti A, Moncada S, Di Rosa M. Modulation of adjuvant arthritis by endogenous nitric oxide. Br J Pharmacol 110: 701–706, 1993.

    PubMed  CAS  Google Scholar 

  160. Stefanovic-Racic M, Meyers K, Meschter C, Coffey JW, Hoffman RA, Evans CH. N-monomethyl arginine, an inhibitor of nitric oxide synthase, suppresses the development of adjuvant arthritis in rats. Arthritis Rheum 37: 1062–1069, 1994.

    PubMed  CAS  Google Scholar 

  161. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF, Wahl SM. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med 178: 749–754, 1993.

    PubMed  CAS  Google Scholar 

  162. Connor JR, Manning PT, Settle SL, Moore WM, Jerome GM, Webber RK, Tjoeng FS, Currie MG. Suppression Of Adjuvant-Induced Arthritis By Selective Inhibition Of Inducible Nitric Oxide Synthase. European Journal of Pharmacology 273: 15–24, 1995.

    PubMed  CAS  Google Scholar 

  163. Weinberg JB. Nitric oxide as an inflammatory mediator in autoimmune MRL-lpr/lpr mice. Environ Health Perspect 106: 1131–1137, 1998.

    PubMed  CAS  Google Scholar 

  164. Sakurai H, Kohsaka H, Liu MF, Higashiyama H, Hirata Y, Kanno K, Saito I, Miyasaka N. Nitric oxide production and inducible nitric oxide synthase expression in inflammatory arthritides. Journal of Clinical Investigation 96: 2357–2363, 1995.

    PubMed  CAS  Google Scholar 

  165. Grabowski PS, England AJ, Dykhuizen R, Copland M, Benjamin N, Reid DM, Ralston SH. Elevated Nitric Oxide Production In Rheumatoid Arthritis – Detection Using the Fasting Urinary Nitrate/Creatinine Ratio. Arthritis & Rheumatism 39: 643–647, 1996.

    CAS  Google Scholar 

  166. Farrell AJ, Blake DR, Palmer RM, Moncada S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Annals of the Rheumatic Diseases 51: 1219–1222, 1992.

    PubMed  CAS  Google Scholar 

  167. Ueki Y, Miyake S, Tominaga Y, Eguchi K. Increased nitric oxide levels in patients with rheumatoid arthritis. Journal of Rheumatology 23: 230–236, 1996.

    PubMed  CAS  Google Scholar 

  168. Onur O, Akinci AS, Akbiyik F, Unsal I. Elevated levels of nitrate in rheumatoid arthritis. Rheumatol Int 20: 154–158, 2001.

    PubMed  CAS  Google Scholar 

  169. Pham TN, Rahman P, Tobin YM, Khraishi MM, Hamilton SF, Alderdice C, Richardson VJ. Elevated serum nitric oxide levels in patients with inflammatory arthritis associated with co-expression of inducible nitric oxide synthase and protein kinase C-eta in peripheral blood monocyte-derived macrophages. J Rheumatol 30: 2529–2534, 2003.

    PubMed  CAS  Google Scholar 

  170. Weinberg JB, Granger DL, Pisetsky DS, Seldin MF, Misukonis MA, Mason SN, Pippen AM, Ruiz P, Wood ER, Gilkeson GS. The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine. J Exp Med 179: 651–660, 1994.

    PubMed  CAS  Google Scholar 

  171. Dang-Vu AP, Pisetsky DS, Weinberg JB. Functional alterations of macrophages in autoimmune MRL-lpr/lpr mice. J Immunol 138: 1757–1761, 1987.

    PubMed  CAS  Google Scholar 

  172. Weinberg JB, Gilkeson GS, Mason RP, Chamulitrat W. Nitrosylation of blood hemoglobin and renal nonheme proteins in autoimmune MRL-lpr/lpr mice. Free Radical Biology & Medicine 24: 191–196, 1998.

    CAS  Google Scholar 

  173. Keng T, Privalle CT, Gilkeson GS, Weinberg JB. Peroxynitrite formation and decreased catalase activity in autoimmune MRL-lpr/lpr mice. Mol Med 6: 779–792, 2000.

    PubMed  CAS  Google Scholar 

  174. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Banes AJ, Guilak F. The effects of static and intermittent compression on nitric oxide production in articular cartilage explants. J Orthop Res 19: 729–737, 2001.

    PubMed  CAS  Google Scholar 

  175. Fermor B, Haribabu B, Weinberg JB, Pisetsky DS, Guilak F. Mechanical stress and nitric oxide influence leukotriene production in cartilage. Biochem Biophys Res Commun 285: 806–810, 2001.

    PubMed  CAS  Google Scholar 

  176. Griffiths RJ, Pettipher ER, Koch K, Farrell CA, Breslow R, Conklyn MJ, Smith MA, Hackman BC, Wimberly DJ, Milici AJ, et al. Leukotriene B4 plays a critical role in the progression of collagen-induced arthritis. Proc Natl Acad Sci U S A 92: 517–521, 1995.

    PubMed  CAS  Google Scholar 

  177. Cernanec J, Guilak F, Weinberg JB, Pisetsky DS, Fermor B. Influence of hypoxia and reoxygenation on cytokine-induced production of proinflammatory mediators in articular cartilage. Arthritis Rheum 46: 968–975, 2002.

    PubMed  CAS  Google Scholar 

  178. Fink C, Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Guilak F. The effect of dynamic mechanical compression on nitric oxide production in the meniscus. Osteoarthritis Cartilage 9: 481–487, 2001.

    PubMed  CAS  Google Scholar 

  179. Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F. Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol 95: 308–313, 2003.

    PubMed  CAS  Google Scholar 

  180. Agarwal S, Long P, Gassner R, Piesco NP, Buckley MJ. Cyclic tensile strain suppresses catabolic effects of interleukin-1beta in fibrochondrocytes from the temporomandibular joint. Arthritis Rheum 44: 608–617, 2001.

    PubMed  CAS  Google Scholar 

  181. Agarwal S, Long P, Seyedain A, Piesco N, Shree A, Gassner R. A central role for the nuclear factor-kappaB pathway in anti-inflammatory and proinflammatory actions of mechanical strain. Faseb J 17: 899–901, 2003.

    PubMed  CAS  Google Scholar 

  182. Fermor B, Jeffcoat D, Hennerbichler A, Pisetsky DS, Weinberg JB, Guilak F. The effects of cyclic mechanical strain and tumor necrosis factor alpha on the response of cells of the meniscus. Osteoarthritis Cartilage 12: 956–962, 2004.

    PubMed  Google Scholar 

  183. Upton ML, Hennerbichler A, Fermor B, Guilak F, Weinberg JB, Setton LA. Biaxial strain effects on cells from the inner and outer regions of the meniscus. Collagen Tissue Research Connect Tissue Res 47: 207–214, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Weinberg, B.J., Fermor, B., Guilak, F. (2007). Nitric Oxide Synthase and Cyclooxygenase Interactions in Cartilage and Meniscus. In: Harris, R.E., et al. Inflammation in the Pathogenesis of Chronic Diseases. Subcellular Biochemistry, vol 42. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5688-5_2

Download citation

Publish with us

Policies and ethics