Skip to main content

Recovery Of Zinc, Nickel, Cobalt And Other Metals By Bioleaching

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acevedo F. 2002. Present and future of bioleaching in developing countries. EJB Electronic J Biotechnol 5: 18-19.

    Google Scholar 

  • Acharya C, Kar RN, Sukla LB. 2003. Studies on reaction mechanism of bioleaching of manganese ore. Minerals Engineering 16: 1027-1030.

    Article  CAS  Google Scholar 

  • Askari Zamani MA, Hiroyoshi N, Tsunekawa M, Vaghar R, Oliazadeh M. 2005. Bioleaching of Sarcheshmeh molybdenite concentrate for extraction of rhenium. Hydrometallurgy 80: 23-31.

    Article  CAS  Google Scholar 

  • Brierley JA, Brierley CL. 2001. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy 59: 233-239.

    Article  CAS  Google Scholar 

  • Brochot S, Durante MV, Villeneuve J, d’Hugues P, Mugabi M. 2004. Modelling of the bioleaching of sulfide ores: application for the simulation of the bioleaching/gravity section of the Kasese Cobalt Company Ltd process plant. Miner Eng 17: 253-260.

    Article  CAS  Google Scholar 

  • Castro IM, Fietto JLR, Vieira RX, Trópia MJM, Campos LMM, Paniago EB, Brandão RL. 2000. Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy 57: 39-49.

    Article  CAS  Google Scholar 

  • Clark ME, Batty J, van Buuren C, Dew D, Eamon M. 2005. Biotechnology in minerals processing: Technological Breakthroughs creating value. In: In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 17-29.

    Google Scholar 

  • Coto O, Peguero M, Abín L, Bruguera N, Marrero J, Bosecker K. 2005. Bioleaching of laterite by Aspergillus niger strain O-5: an acidophilic, and nickel and cobalt resistant fungus. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 357-364.

    Google Scholar 

  • Curutchet G, Donati E, Oliver C, Pogliani C, Viera M. 2001. Development of Thiobacillus biofilms for metal recovery. In: Doyle RJ, ed. Microbial Growth in Biofilms, Methods in Enzymology, Academic Press, San Diego, 337, 171-186.

    Google Scholar 

  • da Silva G. 2004a. Relative importance of diffusion and reaction control during the bacteria and ferric sulfate leaching of zinc sulfide. Hydrometallurgy 73: 313-324.

    Article  CAS  Google Scholar 

  • da Silva GL. 2004b. Kinetics and mechanism of the bacterial and ferric sulfate oxidation of galena. Hydrometallurgy 75: 99-110.

    Google Scholar 

  • da Silva G, Lastra MR, Budden JR. 2003. Electrochemical passivation of sphalerite during bacterial oxidation in the presence of galena. Miner Eng 16: 199-203.

    Article  CAS  Google Scholar 

  • Deveci H, Akcil A, Alp I. 2004. Bioleaching of complex zinc sulfides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy 73: 293-303.

    Article  CAS  Google Scholar 

  • Ehrlich HL. 1997. Technical potential for bioleaching and biobeneficiation of ores to recover base metals (other than iron and copper), platinum-group metals and silver. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 129-150.

    Google Scholar 

  • Ehrlich HL. 2001. Past, present and future of biohydrometallurgy. Hydrometallurgy 59: 127-134.

    Article  CAS  Google Scholar 

  • Fowler TA, Crundwell FK. 1999. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of the sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol 65: 5285-5292.

    PubMed  CAS  Google Scholar 

  • Frías C, Díaz G, Ocaña N, Lozano JI. 2002. Silver, gold and leach recovery from bioleaching residues using the PLINT process. Miner Eng 15: 877-878.

    Article  Google Scholar 

  • Frizán V, Giaveno A, Chiacchiarini P, Donati R. 2003. Bioleaching of Argentinean sulfide ores using pure and mixed cultures. In: Tzesos M, Hatzikioseyan A, Remoundaki E, eds. Biohydrometallurgy – A Sustainable Technology in Evolution, Proceedings of the International Biohydrometallurgy Symposium IBS 2003, September 14–19, Athens, Greece, National Technical University of Athens, 125-135.

    Google Scholar 

  • Giaveno A, Donati R. 2001. Bioleaching of heazelwoodite by Thiobacillus spp. Process Biochem 36: 955-962.

    Article  CAS  Google Scholar 

  • Giaveno A, Chiacchiarini P, Lavalle L, Donati R. 2005. Reversed flow airlift characterization for bioleaching applications. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 125-135.

    Google Scholar 

  • Hallman R, Friedrich A, Koops HP, Pommerening-Röser A, Rohde K, Zenneck C, Sand W. 1992. Physiological characteristics of Thiobacillus ferrooxidansand Leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching. Geomicrobiol J 10: 193-206.

    Article  Google Scholar 

  • Harvey TJ, Van Der Merwe W, Afewu K. 2002. The application of the GeoBiotics GEOCOAT® biooxidation technology for the treatment of sphalerite at Kumba resources’ Rosh Pinah mine. Miner Eng 15: 823-829.

    Article  CAS  Google Scholar 

  • Harvey TJ, Joubert J, Van Der Merwe W. 2003. Use of Computer Simulation for the Design of a Bioheap Leach for Sphalerite. In: SME Annual General Meeting, February 2003, Cincinnati, Ohio. Available from www.geobiotics.com/pages/publications.cfm.

    Google Scholar 

  • International Zinc Association: Zinc production and uses. 2005. Available from www.iza.com.

    Google Scholar 

  • Kai T, Suenaga Y-i, Migita A, Takahashi T. 2000. Kinetic model for simultaneous leaching of zinc sulfide and manganese dioxide in the presence of iron-oxidizing bacteria. Chem Eng Scie 55: 3429-3436.

    Article  CAS  Google Scholar 

  • Keeling, SE, Palmer, ML, Caracatsanis, FC, Johnson, JA, Watling, HR. 2005. Leaching of chalcopyrite and sphalerite using bacteria enriched from a spent chalcocite heap. Miner Eng 18: 1289-1296.

    Article  CAS  Google Scholar 

  • Konishi Y, Kubo H, Asai S. 1992. Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans. Biotechnol Bioeng 39: 66-74.

    Article  CAS  Google Scholar 

  • Konishi Y, Nishimura H, Asai S. 1998. Bioleaching of sphalerite by the acidophilic thermophilic Acidianus brierleyi. Hydrometallurgy 47: 339-352.

    Article  CAS  Google Scholar 

  • Lee J-U, Kim S-M, Kim K-W, Kim IS. 2005. Microbial removal of uranium in uranium-bearing black shale. Chemosphere 59: 147-154.

    Article  PubMed  CAS  Google Scholar 

  • Liao MX, Deng TL. 2004. Zinc and lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach. Miner Eng 17: 17-22.

    Article  CAS  Google Scholar 

  • Liu, H-L, Teng C-H, Cheng Y-C. 2004. Semiempirical model for bacterial growth and bioleaching of Acidithiobacillus spp. Chem Eng J 99: 77-87.

    Article  CAS  Google Scholar 

  • Lizama HM, Fairweather MJ, Dai Z, Allegretto TD. 2003. How does bioleaching start?. Hydrometallurgy 69: 109-116.

    Article  CAS  Google Scholar 

  • Lochmann J, Pedlik M. 1995. Kinetics anomalies of dissolution of sphalerite in ferric sulfate solution. Hydrometallurgy 37: 89-96.

    Article  CAS  Google Scholar 

  • Mason LJ, Rice NM. 2002. The adaptation of Thiobacillus ferrooxidans for the treatment of nickel–iron sulfide concentrates. Miner Eng 15: 795-808.

    Article  CAS  Google Scholar 

  • Medrano-Roldán H, Salinas-Martínez A, Hernández-Carbajal GR, Solís-Soto A, Morales-Castro J, Delgado E, Soto-Cruz NO, Pereyra-Alférez B, Galán-Wong JL, Dávila-Flores RT. 2005. Manganese bioleaching from mine tailings by a native Acidithiobacillus ferrooxidans strain. II. Data from laboratory and pilot plant non-conventional rotating Drum reactors. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 351-355.

    Google Scholar 

  • Morin D, d’Hugues P, Mugabi M, 2003. Bioleaching of metallic sulfide concentrate in continuous stirred reactors at industrial scale experience and lessons. In: Tzesos M, Hatzikioseyan A, Remoundaki E, eds. Biohydrometallurgy – A Sustainable Technology in Evolution, Proceedings of the International Biohydrometallurgy Symposium IBS 2003, September 14–19, Athens, Greece, National Technical University of Athens.

    Google Scholar 

  • Morin D, Lips A, Pinches A, Huisman J, Frias C, Norberg A, Forssberg E. 2005. BioMinE Integrated project for the development of biotechnology for metal-bearing materials in Europe. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 33-40.

    Google Scholar 

  • Mulligan CN, Kamali M, Gibbs BF. 2004. Bioleaching of heavy metals from low-grade mining ore using Aspergillus niger. J Haz Mat 110: 77-84.

    Article  CAS  Google Scholar 

  • Nasernejad B, Kaghazchi T, Edrisi M, Sohrabi M. 1999. Bioleaching of molybdenum from low-grade copper ore. Process Biochem 35: 437-440.

    Article  Google Scholar 

  • Olson GJ, Brierley JA, Brierley CL. 2003. Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the mineral industries. Appl Microbiol Biotechnol 63: 249-257.

    Article  PubMed  CAS  Google Scholar 

  • Pani CK, Swain S, Kar RN, Chaudhury GR, Sukla LB, Misra VN. 2003. Biodissolution of zinc sulfide concentrate in 160 l 4-stage continuous bioreactor. Miner Eng 16: 1019-1021.

    Article  CAS  Google Scholar 

  • Pina PS, Leão VA, Silva CA, Daman D, Frenay J. 2005. The effect of ferrous and ferric iron on sphalerite bioleaching with Acidithiobacillus sp. Miner Eng 18: 549-551.

    Article  CAS  Google Scholar 

  • Pogliani C, Donati E. 2000. Immobilisation of Thiobacillus ferrooxidans: importance of jarosite precipitation. Process Biochem 35: 997-1004.

    Article  CAS  Google Scholar 

  • Rawlings DE. 1995. Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidansand Leptospirillum ferrooxidans strains in bioleaching environments. In: Jerez JCA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical processing, Proceedings of the International Biohydrometallurgy Symposium IBS-95, Vina del Mar, Chile. University of Chile, Santiago de Chile, Vol. 2, 9-17.

    Google Scholar 

  • Rawlings DE. 1997. Mesophilic, Autotrophic bioleaching bacteria: description, physiology and role. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes, Springer-Verlag, Berlin, 229-245.

    Google Scholar 

  • Rawlings DE, Dew D, du Plessis C. 2003. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol. 21: 38-44.

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DE. 2005. Characteristics and adaptability of iron- and sulfur oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories 4: 13-28.

    Article  PubMed  CAS  Google Scholar 

  • Rezza I, Salinas E, Elorza M, Sanz de Tosetti M, Donati E. 2000. Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochem 36: 495-500.

    Article  Google Scholar 

  • Rodríguez Y, Ballester A, Blázquez ML, González F, Muñoz JA. 2003. New information on the sphalerite bioleaching mechanisms at low and high temperature. Hydrometallurgy 71: 57-66.

    Article  CAS  Google Scholar 

  • Romano P, Blázquez ML, Ballester A, González F, Alguacil FJ. 2001. Reactivity of a molybdenite concentrate against chemical or bacterial attack. Miner Eng 14: 987-996.

    Article  CAS  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W. 2003. Bioleaching review part A: Progress in bioleaching: fundaments and mechanism of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63: 239-248.

    Article  PubMed  CAS  Google Scholar 

  • Sampson MI, Van der Merwe W, Harvey TJ, Bath MD. 2005. Testing the ability of a low grade sphalerite concentrate to achieve autothermality during biooxidation heap leaching. Miner Eng 18: 427-437.

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T, Jozsa P-G, Schippers A. 1999. Direct versus indirect bioleaching. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 27-49.

    Google Scholar 

  • Schippers A, Sand W. 1997. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65: 319-321.

    Google Scholar 

  • Semenza M, Viera M, Curutchet G, Donati E. 2002. The role of Acidithiobacillus caldus in the bioleaching of metal sulfides. Latin American Appl Res 32: 303-306.

    CAS  Google Scholar 

  • Shi S-Y, Fang Z-H. 2004. Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferro-oxidans. Hydrometallurgy 75: 1-10.

    CAS  Google Scholar 

  • Shi S-Y, Fang Z-H. 2005. Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor. Int J Miner Process 76: 3-12.

    Article  CAS  Google Scholar 

  • Shi S-Y, Fang Z-F, Ni J-R. 2005. Bioleaching of marmatite flotation concentrate with a moderately thermoacidophilic iron-oxidizing bacterial strain. Hydrometallurgy 18: 1127-1129.

    CAS  Google Scholar 

  • Shi S-Y, Fang Z-F, Ni J-R. 2006. Comparative study on the bioleaching of zinc sulfides. Process Biochem 41: 438-446.

    Article  CAS  Google Scholar 

  • Swamy KM, Narayana KL, Misra VN. 2005. Bioleaching with ultrasound. Ultrasonics Sonochemistry 12: 301-306.

    Article  PubMed  CAS  Google Scholar 

  • Tipre DR, Dave SR. 2004. Bioleaching process for Cu-Pb-Zn bulk concentrate at high pulp density. Hydrometallurgy 74: 37-43.

    Article  CAS  Google Scholar 

  • Valix M, Tang JY, Cheung WH. 2001. The effects of mineralogy on the biological leaching of nickel laterite ores. Miner Eng 14: 1629-1635.

    Article  CAS  Google Scholar 

  • Veglio F, Beolchini F, Gasbarro A, Toro L, Ubaldini S, Abbruzzese C. 1997. Batch and semi-continuous tests in the bioleaching of manganiferous minerals by heterotrophic mixed microorganisms. Int J Miner Process 50: 255-273.

    Article  CAS  Google Scholar 

  • Viera M, Donati E. 2004. Microbial processes to metal recovery from waste products. Curr Top Biotechnol 1: 117-127.

    Google Scholar 

  • Willscher S, Bosecker K. 2003. Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump. Hydrometallurgy 71: 257-264.

    Article  CAS  Google Scholar 

  • Zhang G, Fang ZH. 2005. The contribution of direct and indirect actions in bioleaching of pentlandite. Hydrometallurgy 80: 59-66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Viera, M., Pogliani, C., Donati, E. (2007). Recovery Of Zinc, Nickel, Cobalt And Other Metals By Bioleaching. In: Donati, E.R., Sand, W. (eds) Microbial Processing of Metal Sulfides. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5589-7_5

Download citation

Publish with us

Policies and ethics