Skip to main content

Nutritional and Baking Quality of low Phytic Acid Wheat

  • Conference paper
Wheat Production in Stressed Environments

Part of the book series: Developments in Plant Breeding ((DIPB,volume 12))

Abstract

Phytic acid is the major storage form of phosphorus in wheat grain. Non-ruminant animals cannot utilize phytic acid phosphorus, and phytic acid reduces the nutritional availability of important minerals. We have identified a wheat mutant (Lpa1-1) with reduced phytic acid P and increased inorganic P (Pi). Ideally, LPA wheats will have improved micronutrient availability without detrimental effects on baking quality. To test this hypothesis, the mutant phenotype was transferred via backcrossing into the hard red spring wheat cultivar ‘Grandin.’ Wild-type (WT) and low phytic acid (LPA) sib selections from two backcross families were grown in replicated, irrigated yield trials at Aberdeen, ID in 2003 and 2004. Total P, Pi, and phytic acid P (PAP) were measured in grain and in fractions obtained after milling on a Quadrumat Sr. experimental mill. Elemental concentrations (Ca, Cu, Fe, Mg, Mn, P, S, and Zn) were measured in flour and bran fractions by ICP mass spectrometry. Total P concentration in grain of WT and LPA sib lines was similar. However, the distribution of P between phytic acid and Pi was altered: Pi in LPA grain was up to 340% of WT grain, and PAP in LPA grain was reduced to as low as 65% of the concentration in WT grain. This difference in P composition of grain was reflected in flour: Pi in break and reduction flours of LPA wheat was 3- to 4-times the concentration in break and reduction flours from WT wheat. Total P concentration in LPA flours was 20% greater than in WT flours. Mineral concentrations in bran and shorts of LPA and WT wheats were similar. However, magnesium concentrations in LPA break and reduction flours were significantly greater than in WT flours. The LPA genotype had little effect on concentrations of other minerals. Increases in P and Mg concentration in LPA flours were manifested in greater flour ash concentration. Flour ash of WT flours averaged 3.86 g kg-1; flour ash of LPA flours averaged 4.38 g kg-1. Protein concentration of LPA and WT flours was similar. However, LPA flours had a longer time to mixograph peak and greater mixograph peak height than WT flours. Bread loaf volume of LPA and WT flours was similar. The results of this study indicate that the LPA trait can produce flours with greater Pi and Mg concentration and little effect on bread flour functionality

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Association of Cereal Chemists (2000) Approved Methods of the AACC, 10th edn. American Association of Cereal Chemists, St. Paul, MN, USA

    Google Scholar 

  • Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  • Guttieri MJ, Bowen D, Dorsch JA, Raboy V, Souza E (2004) Identification and characterization of a low phytic acid wheat. Crop Sci 44 (erratum 1505):418–424

    Article  CAS  Google Scholar 

  • Haug W, Lantzsch HJ (1983) Sensitive method for the rapid determination of phytate in cereals and cereal products. J Sci Food Agr 34:1423–1426

    Article  CAS  Google Scholar 

  • Souza EJ, Tyler JM, Kephart KD, Kruk M (1993) Genetic improvement in milling and baking quality of hard red spring wheat cultivars. Cereal Chem 70:280–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Guttieri, M.J., Peterson, K.M., Souza, E.J. (2007). Nutritional and Baking Quality of low Phytic Acid Wheat. In: Buck, H.T., Nisi, J.E., Salomón, N. (eds) Wheat Production in Stressed Environments. Developments in Plant Breeding, vol 12. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5497-1_59

Download citation

Publish with us

Policies and ethics