Skip to main content

Molecular and Biochemical Characterization of Puroindoline A and B Alleles in Chinese Improved Cultivars And Landraces

  • Conference paper
Wheat Production in Stressed Environments

Part of the book series: Developments in Plant Breeding ((DIPB,volume 12))

Abstract

Kernel hardness conditioned by puroindoline genes has a profound effect on milling, baking and end-use quality of bread wheat. In this study, 251 current cultivars and advanced lines, 166 historical cultivars, and 219 landraces from China were investigated for their kernel hardness and puroindoline alleles using molecular and biochemical markers. The frequencies of soft, mixed and hard genotypes were 31.5%, 21.1%, and 47.4%, respectively, in current cultivars, 45.2%, 13.9% and 40.9%, respectively, in historical cultivars, whereas 42.7%, 24.3% and 33.0%, respectively, in Chinese landraces. Among hard wheat genotypes, frequencies of PINA null, Pinb-D1b and new allele Pinb-D1p genotypes were 43.8%, 12.3% and 39.7%, respectively, in hard wheat of landraces, while 48.5%, 36.8% and 14.7%, respectively, in historical hard wheats, and 13.4%, 76.5%, and 8.4%, respectively, in current cultivars. New alleles Pinb-D1q and Pinb-D1t, was identified in winter wheat Jingdong 11 and two landraces Guangtouxianmai and Hongmai, respectively. A new Pina-D1 allele, designated Pina-D1m, was detected in the landrace Hongheshang. Among the PINA null genotypes, Pina-D1l was detected in five landraces, while another novel Pina-D1 allele, designed as Pina-D1n, was identified in six landraces

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cane K, Spackman M, Eagles HA (2004) Puroindoline genes and their effects on grains quality traits in southern Australian wheat cultivars. Aust J Agr Res 55:89–95

    Article  CAS  Google Scholar 

  • Chen F, He ZH, Xia XC, Lillemo M, Morris CF (2005) A new puroindoline b mutation present in Chinese winter wheat cultivar Jingdong 11. J Cereal Sci 42:267–269

    Article  CAS  Google Scholar 

  • Gautier MF, Aleman ME, Guirao A, Marion D, Joudrier P (1994) Triticum aestivum puroindolines, two basic cysteine rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25:43–57

    Article  PubMed  CAS  Google Scholar 

  • Gazza L, Nocente F, Ng PKW, Pogna NE (2005) Genetic and biochemical analysis of common wheat cultivars lacking puroindoline a. Theor Appl Genet 110:470–478

    Article  PubMed  CAS  Google Scholar 

  • Gedye KR, Morris CF, Bettge AD (2004) Determination and evaluation of the sequence and testural effects of the puroindoline a and puroindoline b genes in a population of synthetic hexaploid wheat. Theor Appl Genet 109:1597–1063

    Article  PubMed  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1997) A glycine to serine change in puroindoline b is asssociated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95:857–864

    Article  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in friabilin components puroindoline a and b. Proc Natl Acad Sci USA 95:6262–6266

    Article  PubMed  CAS  Google Scholar 

  • Giroux MJ, Talbert L, Habernicht DK, Lanning A, Hemphill A, Martin JM (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci 40:370–374

    Article  CAS  Google Scholar 

  • Greenwell P, Schofield JD (1986) A starch granule protein associated with endosperm softness in wheat. Cereal Chem 63:379–380

    CAS  Google Scholar 

  • He ZH, Rajaram S, Xin ZY, Huang GZ (2001) A history of wheat breeding in China. CIMMYT, Mexico, DF, pp 1–94

    Google Scholar 

  • Hogg AC, Sripo T, Beecher B, Martin JM, Gorpux MJ (2004) Wheat puroindolines interact to form friabilin and control wheat grain hardness. Theor Appl Genet 108:1089–1097

    Article  PubMed  CAS  Google Scholar 

  • Lagudah ES, Appels R, Mcneil D (1991) The Nor-D3locus of Triticum tauschii: natural variation and genetic linkage to markers in chromosome 5. Genome 34:387–395

    CAS  Google Scholar 

  • Lillemo M, Morris CF (2000) A leucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theor Appl Genet 100:1100–1107

    Article  CAS  Google Scholar 

  • Martin JM, Frohberg RC, Morris CF, Talbert LE, Giroux MJ (2001) Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci 41:228–234

    Article  CAS  Google Scholar 

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Anderson OD (2005) Catalogue of gene symbols for wheat: 2005 supplement, published online at: http://wheat.pw.usda.gov/ggpages/wgc/2005 upd.html

    Google Scholar 

  • Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647

    Article  PubMed  CAS  Google Scholar 

  • Morris CF, Massa AN (2003) Puroindoline genotype of the U.S. national institute of standards & technology reference material 8441, wheat hardness. Cereal Chem 80:674–678

    CAS  Google Scholar 

  • Morris CF, Greenblatt GA, Bettge AD, Malkawi HI (1994) Isolation and characterization of multiple forms of friabilin. J Cereal Sci 20:167–174

    Article  CAS  Google Scholar 

  • Morris CF, Lillemo M, Simeone MC, Giroux MJ, Babb SL, Kimberlee KK (2001) Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheats. Crop Sci 41:218–228

    Article  CAS  Google Scholar 

  • Ram S, Jain N, Shoran J, Singh R (2005) New frame shift mutation in puroindoline b in Indian wheat cultivars Hyb65 and NI5439. J Plant Biochem Biotechnol 14:45–48

    CAS  Google Scholar 

  • Tranquilli G, Heaton J, Chicaiza O, Dubcovsky J (2002) Substitutions and deletions of genes related to grain hardness in wheat and their effect on grain texture. Crop Sci. 42:1812–1817

    Article  CAS  Google Scholar 

  • Xia LQ, Chen F, He ZH, Chen XM, Morris CF (2005) Occurrence of puroindoline alleles in Chinese winter wheats. Cereal Chem 82:38–43

    CAS  Google Scholar 

  • Zhuang QS (2003) Chinese wheat improvement and pedigree analysis. Chinese Agriculture Press. Beijing, pp 1–681

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

He, Z.H. et al. (2007). Molecular and Biochemical Characterization of Puroindoline A and B Alleles in Chinese Improved Cultivars And Landraces. In: Buck, H.T., Nisi, J.E., Salomón, N. (eds) Wheat Production in Stressed Environments. Developments in Plant Breeding, vol 12. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5497-1_53

Download citation

Publish with us

Policies and ethics