Spatial Pattern Analysis as a Focus of Landscape Ecology to Support Evaluation of Human Impact on Landscapes and Diversity

  • K.J. Koffi
  • V. Deblauwe
  • S. Sibomana
  • D.F.R. Neuba
  • D. Champluvier
  • C. De Canniere
  • N. Barbier
  • D. Traore
  • B. Habonimana
  • E. Robbrecht
  • J. Lejoly
  • J. Bogaert


The relation between landscape patterns and ecological processes forms a central hypothesis of landscape ecology. Three types of pattern analysis to assess anthropogenic impacts on landscape ecosystems and biodiversity are presented in this chapter. Firstly, the results of an analysis of Acanthaceae data in Central Africa are presented and compared with phytogeographic theories. Phytogeography data reflect the spatial variability of plant diversity, and constitute therefore a major tool in conservation policy development. We investigated if it was possible to proxy the phytogeographic classifications by the spatial distribution of Acanthaceae only. When combined with a classic landscape pattern analysis, this type of study could provide complementary information for the definition of conservation priorities. Secondly, we present an analysis of periodic vegetations in the Sudan. It can be accepted that through an understanding of the underlying mechanisms of the formation of this unique pattern geometry, the knowledge with regard to the functioning and vulnerability of these ecosystems can be deepened. Using high-resolution remote sensing imagery and digital elevation models, the relation between pattern symmetry and slope gradient was explored. In particular, slope gradients that could condition the transition between spotted and tiger bush pattern types were focused. The influence of other sources of anisotropy was also considered. Finally, a complementary approach to the calculation of landscape metrics to analyse landscape pattern is described, using the spatial processes themselves causing landscape transformation. Landscape ecologists agree that there appears to be a limited number of common spatial configurations that can result from land transformation processes. Ten processes of landscape transformation are considered: aggregation, attrition, creation, deformation, dissection, enlargement, fragmentation, perforation, shift, and shrinkage. A decision tree is presented that enables definition of the transformation process involved using patch-based data. This technique can help landscape managers to refine their description of landscape dynamics and will assist them in identifying the drivers of landscape transformation


Landscape Ecology Landscape Pattern Slope Gradient Landscape Metrics Vegetation Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguiar, M.R. and Sala, O.E. (1999). Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology & Evolution, 14, 273-277.CrossRefGoogle Scholar
  2. Anderson, S. (1994). Area and endemism. Quarterly Review of Biology, 69, 451-471.CrossRefGoogle Scholar
  3. Antrop, M. (2001). The language of landscape ecologists and planners – A comparative content analysis of concepts used in landscape ecology. Landscape and Urban Planning, 55, 163-173.CrossRefGoogle Scholar
  4. Barbier, N., Couteron, P., Lejoly, J., Deblauwe, V. and Lejeune, O. Self-organised vegetation patterning as fingerprint of climate and human impact on semiarid ecosystems. Journal of Ecology, in press.Google Scholar
  5. Bastian, O. (2001). Landscape ecology: towards a unified discipline? Landscape Ecology, 16, 757-766.CrossRefGoogle Scholar
  6. Betti, J.L. (2001). Vulnerabilité des plantes utilisées comme antipaludiques dans l’arrondissement de Mintom au Sud de la Réserve du Dja (Cameroun). Systematics and Geography of Plants, 71, 661- 678.CrossRefGoogle Scholar
  7. Boaler, S.B. and Hodge, C.A.H. (1964). Observations on vegetation arcs in the Northern region, Somali republic. Journal of Ecology, 52, 511-544.CrossRefGoogle Scholar
  8. Bogaert, J., Ceulemans, R. and Salvador-Van Eysenrode, D. (2004). A decision tree algorithm for detection of spatial processes in landscape transformation. Environmental Management, 33, 62-73.PubMedCrossRefGoogle Scholar
  9. Bogaert, J. and Hong, S.-K. (2004). Landscape ecology: monitoring landscape dynamics using spatial pattern metrics. In S.-K. Hong, J.A. Lee, B.-S. Ihm, A. Farina, Y. Son, E.-S. Kim and J.C. Choe (Eds.), Ecological Issues in a Changing World (pp. 109-131). Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  10. Bogaert, J., Myneni, R.B. and Knyazikhin, Y. (2002). A mathematical comment on the formulae for the aggregation index and the shape index. Landscape Ecology, 17, 87-90.CrossRefGoogle Scholar
  11. Bultot, F. (1950). Carte des Régions Climatiques du Congo Belge Etablie d’après les Critères de Köppen (Communication n°9 du Bureau Climatologique). Publication I.N.E.A.C.Google Scholar
  12. Collinge, S.K. (1998). Spatial arrangement of habitat patches and corridors: clues from ecological field experiments. Landscape and Urban Planning, 42, 157-168.CrossRefGoogle Scholar
  13. Collinge, S.K. and Forman, R.T.T. (1998). A conceptual model of land conversion processes: predictions and evidence from a microlandscape experiment with grassland insects. Oikos, 82, 66-84.CrossRefGoogle Scholar
  14. Coulson, R.N., Saarenmaa, H., Daugherty, W.C., Rykiel, E.J.Jr., Saunders, M.C. and Fitzgerald, J.W. (1999). A knowledge system environment for ecosystem management. In J.M. Klopatek and R.H. Gardner (Eds.), Landscape Ecological Analysis – Issues and Applications (pp. 57-79). Springer, New York.Google Scholar
  15. Couteron, P. (2002). Quantifying change in patterned semi-arid vegetation by Fourier analysis of digitized aerial photographs. International Journal of Remote Sensing, 23, 3407-3425.CrossRefGoogle Scholar
  16. Couteron, P., Barbier, N. and Gautier, D. Textural ordination based on Fourier spectral decomposition: a method to analyze and compare landscape patterns. Landscape Ecology, in press.Google Scholar
  17. Couteron, P. and Lejeune, O. (2001). Periodic spotted patterns in semi-arid vegetation explained by a propagation-inhibition model. Journal of Ecology, 89, 616-628.CrossRefGoogle Scholar
  18. Couteron, P., Pelissier, R., Nicolini, E.A. and Paget, D. (2005). Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. Journal of Applied Ecology, 42, 1121-1128.CrossRefGoogle Scholar
  19. Crisp, M.D., Laffan, S., Linder, H.P. and Monro, A. (2001). Endemism in the Australian flora. Journal of Biogeography, 28, 183-198.CrossRefGoogle Scholar
  20. Curtis, J.T. (1956). The modification of mid-latitude grasslands and forests by man. In W. L. Thomas (Ed.), Man’s Role in Changing the Face of the Earth (pp. 721-736). University of Chicago Press, Chicago.Google Scholar
  21. d’Herbès, J.M., Valentin, C., Tongway, D.J. and Leprun, J.C. (2001). Banded vegetation patterns and related structures. In D.J. Tongway, C. Valentin, J.M. d’Herbès and J. Seghieri (Eds.), Banded Vegetation Patterning in Arid and Semi-Arid Environments. Ecological Processes and Consequences for Management (pp. 1-19). Springer, New York.Google Scholar
  22. Dunkerley, D.L. and Brown, K.J. (2002). Oblique vegetation banding in the Australian arid zone: implications for theories of pattern evolution and maintenance. Journal of Arid Environments, 51, 163-181.CrossRefGoogle Scholar
  23. Duvigneaud, P. (1958). La végétation du Katanga et de ses sols métallifères. Bulletin de la Société Royale Botanique de Belgique, 90, 127-286.Google Scholar
  24. Farina, A. (1993). From global to regional landscape ecology (editorial comment). Landscape Ecology, 8, 153-154.CrossRefGoogle Scholar
  25. Fisher, N.I. (1993). Statistical Analysis of Circular Data. Cambridge University Press, Cambridge.Google Scholar
  26. Forman, R.T.T. (1995). Land Mosaics: The Ecology of Landscapes and Regions. Cambridge University Press, Cambridge.Google Scholar
  27. Franklin, J.F. and Forman, R.T.T. (1987). Creating landscape patterns by forest cutting: ecological consequences and principles. Landscape Ecology, 1, 5-18.CrossRefGoogle Scholar
  28. Giles, R.H.Jr. and Trani, M.K. (1999). Key elements of landscape pattern measures. Environmental Management, 23, 477-481.CrossRefGoogle Scholar
  29. Greenwood, J.E.G.W. (1957). The development of vegetation patterns in Somaliland Protectorate. Geographical Journal, 123, 465-473.CrossRefGoogle Scholar
  30. Hepper, N.F. (1978). The present stage of botanical exploration of tropical Africa. In I. Hedberg (Ed.) Systematic Botany, Plant Utilisation and Biosphere Conservation (pp. 41-46). I. Almqvist & Wiksell International, Stockholm.Google Scholar
  31. Hepper, N.F. (1979). Deuxième édition de la Carte du Degré d’Exploration Floristique de l’Afrique au Sud du Sahara. In G. Kunkel (Ed.), IXe Réunion plénière de l’AETFAT, Las Palmas.Google Scholar
  32. Ives, R.L. (1946). Desert ripples. American Journal of Science, 244, 492-501.CrossRefGoogle Scholar
  33. Jaeger, J. (2000). Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecology, 15, 115-130.CrossRefGoogle Scholar
  34. Kalanda, K. (1982). Etude Taxonomique et Phytogéographique du Genre Vernonia Schreb. (Asteraceae) au Zaïre. Thèse doctorale, Université de Kisangani, Zaïre.Google Scholar
  35. Lebrun, J. (1960). Sur une méthode de délimitation des horizons et étages de végétation des montagnes du Congo Oriental. Bulletin du Jardin Botanique de l’Etat, 30, 75-94.CrossRefGoogle Scholar
  36. Lebrun, J.P. (1973). Enumeration des Plantes Vasculaires du Sénégal. Etude botanique no. 2, Institut d’Elevage et de Médecine vétérinaire des Pays tropicaux, Maisons-Alfort.Google Scholar
  37. Lebrun, J.P. (1976). Richesse spécifique de la flore vasculaire des divers pays ou régions d’Afrique. Candollea, 31, 11-15.Google Scholar
  38. Lebrun, J.P. (2001). Introduction à la Flore d’Afrique. CIRAD. Ibis Press.Google Scholar
  39. Lebrun, J.P. and Stork, A.L. (1991). Énumération des Plantes à Fleurs D’Afrique Tropicale. Volume. 1. Généralités et Annonaceae à Euphorbiaceae et Pandanceae. Conservatoire et Jardin botaniques. Geneva.Google Scholar
  40. Lefever, R. and Lejeune, O. (1997). On the origin of tiger bush. Bulletin of Mathematical Biology, 59, 263-294.CrossRefGoogle Scholar
  41. Legendre, P. and Legendre, L. (1998). Numerical ecology (2nd English ed.). Elsevier, Amsterdam.Google Scholar
  42. Leprun, J.C. (1999). The influences of ecological factors on tiger bush and dotted bush patterns along a gradient from Mali to northern Burkina Faso. Catena, 37, 25-44.CrossRefGoogle Scholar
  43. Levin, S.A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943-1976.CrossRefGoogle Scholar
  44. Li, H. and Reynolds, J.F. (1994). A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology, 75, 2446-2455.CrossRefGoogle Scholar
  45. Lisowski, S. (1991). Les Asteraceae dans la Flore D’Afrique Centrale. Fragmenta Floristica et Geobotanica 36(1 & 2). Polish Academy of Sciences, W. Szafer Institut.Google Scholar
  46. Mabbutt, J.A. and Fanning, P.C. (1987). Vegetation banding in arid Western Australia. Journal of Arid Environments, 12, 41-59.Google Scholar
  47. MacFadyen, W.A. (1950). Vegetation patterns in the semi-desert plains of British Somaliland. Geographical Journal, 116, 199-210.CrossRefGoogle Scholar
  48. McGarigal, K. and Marks, B.J. (1995). FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure. Department of Agriculture, Pacific Northwest Research Station, PNW-GTR- 351, Oregon.Google Scholar
  49. Montana, C., Lopez Portillo, J. and Mauchamp, A. (1990). The response of two woody species to the conditions created by a shifting ecotone in an arid ecosystem. Journal of Ecology, 78, 789-798.CrossRefGoogle Scholar
  50. Naveh, Z. (2000). What is holistic landscape ecology? A conceptual introduction. Landscape and Urban Planning, 50, 7-26.CrossRefGoogle Scholar
  51. Ndjele, M.B. (1988). Les Eléments Phytogéographiques Endémiques dans la Flore Vasculaire du Zaïre. Thèse doctorale, Faculté des Sciences, Université libre de Bruxelles, Belgique.Google Scholar
  52. O’Neill, R.V., Krummel, J.R., Gardner, R.H., Sugihara, G., Jackson, B., DeAngelis, D.L., Milne, B.T., Turner, M.G., Zygmunt, B., Christensen, S.W., Dale, V. and Graham, R.L. (1988). Indices of landscape pattern. Landscape Ecology, 3, 153-162.CrossRefGoogle Scholar
  53. Ozanda, P. (1982). Les Végétaux dans la Biosphère. Dion éditeurs, Paris.Google Scholar
  54. Renshaw, E. and Ford, E.D. (1984). The description of spatial pattern using two-dimensional spectral analysis. Vegetatio, 56, 75-85.Google Scholar
  55. Riitters, K., Wickham, J., O’Neill, R.V., Jones, B. and Smith, E. (2000). Global-scale patterns of forest fragmentation. Conservation Ecology, 4, Scholar
  56. Robyns W. (1948). Les territoires phytogéographiques du Congo Belge et du Ruanda-Urundi. Atlas général du Congo Belge. Académie Royale des Sciences Coloniales, Bruxelles.Google Scholar
  57. Schlesinger, W.H., Reynolds, J.F., Cunningham, G.L., Huenneke, L.F., Jarrell, W.M. and Virginia, R.A. (1990). Biological feedbacks in global desertification. Science, 247, 1043-1048.PubMedCrossRefGoogle Scholar
  58. Schnell, R. (1971). Introduction à la Phytogéographie des Pays Tropicaux. Volume II : Les Milieux. Les Groupements Végétaux. Editions Gauthier-Villars, ParisGoogle Scholar
  59. Troll, C. (1939). Luftbildplan und ökologische Bodemforschung. Zeitschrift der Gesellschaft für Erdkunde zu Berlin, 241-298.Google Scholar
  60. Turner, M.G. (1989). Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics, 20, 171-197.CrossRefGoogle Scholar
  61. Turner, M.G. and Ruscher, C.L. (1988). Changes in landscape patterns in Georgia, USA. Landscape Ecology, 1, 241-251.CrossRefGoogle Scholar
  62. UICN, (2001). Catégories et critères de l’UICN pour la Liste Rouge. UICN, Gland.Google Scholar
  63. Valentin, C., d’Herbes, J.M. and Poesen, J. (1999). Soil and water components of banded vegetation patterns. Catena, 37, 1-24.CrossRefGoogle Scholar
  64. van de Koppel, J. and Rietkerk, M. (2004). Spatial interactions and resilience in arid ecosystems. American Naturalist, 163, 113-121.PubMedCrossRefGoogle Scholar
  65. von Hardenberg, J., Meron, E., Shachak, M. and Zarmi, Y. (2001). Diversity of vegetation patterns and desertification. Physical Review Letters, 87, art-198101.Google Scholar
  66. White, F. (1979). The Guineo-Congolian region an its relationships to other phytochoria. Bulletin du Jardin Botanique National de Belgique, 49, 11-55.CrossRefGoogle Scholar
  67. White, F. (1983). The Vegetation of Africa. A descriptive Memoire to Accompany the UNESCO/AETFAT Vegetation Map of Africa. UNESCO, Paris.Google Scholar
  68. White, L.P. (1971). Vegetation stripes on sheet wash surfaces. Journal of Ecology, 59, 615-622.CrossRefGoogle Scholar
  69. Wickens, G.E. and Collier, F.W. (1971). Some vegetation patterns in the republic of the Sudan. Geoderma, 6, 43-59.CrossRefGoogle Scholar
  70. Wiens, J.A. (2002). Riverine landscapes: taking landscape ecology into the water. Freshwater Biology, 47, 501-515.CrossRefGoogle Scholar
  71. Wu, J. and Hobbs, R. (2002). Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecology, 17, 355-365.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • K.J. Koffi
    • 1
  • V. Deblauwe
    • 1
  • S. Sibomana
    • 1
    • 2
  • D.F.R. Neuba
    • 3
  • D. Champluvier
    • 4
  • C. De Canniere
    • 5
  • N. Barbier
    • 3
  • D. Traore
    • 6
  • B. Habonimana
    • 2
  • E. Robbrecht
    • 4
  • J. Lejoly
    • 3
  • J. Bogaert
    • 1
  1. 1.Université libre de Bruxelles Laboratoire d’Ecologie du PaysageBruxellesBelgique
  2. 2.Université du Burundi Faculté des Sciences AgronomiquesBujumburaBurundi
  3. 3.Université libre de Bruxelles Service de Botanique Systématique et de PhytosociologieBruxellesBelgique
  4. 4.Jardin Botanique National de BelgiqueMeiseBelgique
  5. 5.Université libre de BruxellesService de Lutte Biologique et d’Ecologie SpatialeBelgique
  6. 6.Université de Cocody-Abidjan Laboratoire de BotaniqueAbidjan

Personalised recommendations