Skip to main content

Histone Variant Nucleosomes

  • Chapter
Chromatin and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 41))

Histone variant are non-allelic forms of the conventional histones. They are expressed at very low levels compared to their conventional counterparts. All the conventional histones, except H4, have histone variants. Together with histone modifications and chromatin remodeling machines, the incorporation of histone variants into the nucleosome is one of the main strategies that the cell uses to regulate transcription, repair, chromosome assembly and segregation. The exact role of the histone variants in these processes is far from clear, but the emerging picture is that the presence of histone variants confers novel structural and functional properties of the nucleosome which affect the chromatin dynamics. In this article we will discuss the functional significance of histone variants on chromatin function and its link to disease manifestation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott DW, Ivanova VS, Wang X, Bonner WM, Ausio J (2001) Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J Biol Chem 276: 41945–41949

    PubMed  CAS  Google Scholar 

  • Adam M, Robert F, Larochelle M, Gaudreau L (2001) H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions. Mol Cell Biol 21: 6270–6279

    PubMed  CAS  Google Scholar 

  • Adams RR, Carmena M, Earnshaw WC (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 11: 49–54

    PubMed  CAS  Google Scholar 

  • Allen MD, Buckle AM, Cordell SC, Lowe J, Bycroft M (2003) The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. J Mol Biol 330: 503–511

    PubMed  CAS  Google Scholar 

  • Angelov D, Molla A, Perche PY, Hans F, Cote J, Khochbin S, Bouvet P, Dimitrov S (2003) The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 11: 1033–1041

    PubMed  CAS  Google Scholar 

  • Angelov D, Verdel A, An W, Bondarenko V, Hans F, Doyen CM, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S (2004) SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays. Embo J 23: 3815–3824

    PubMed  CAS  Google Scholar 

  • Arents G, Moudrianakis EN (1993) Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc Natl Acad Sci U S A 90: 10489–10493

    PubMed  CAS  Google Scholar 

  • Arents G, Burlingame RW, Wang B-C, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 A resolution: A tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A 88: 10148–10152

    PubMed  CAS  Google Scholar 

  • Bao Y, Konesky K, Park YJ, Rosu S, Dyer PN, Rangasamy D, Tremethick DJ, Laybourn PJ, Luger K (2004) Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. Embo J 23: 3314–3324

    PubMed  CAS  Google Scholar 

  • Bassing CH, Alt FW (2004) H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle 3: 149–153

    PubMed  CAS  Google Scholar 

  • Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M, Gleason M, Bronson R, Lee C, Alt FW (2003) Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114: 359–370

    PubMed  CAS  Google Scholar 

  • Beato M, Eisfeld K (1997) Transcription factor access to chromatin. Nucleic Acids Res 25: 3559–3563

    PubMed  CAS  Google Scholar 

  • Becker PB (2002) Nucleosome sliding: facts and fiction. Embo J 21: 4749–4753

    PubMed  CAS  Google Scholar 

  • Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J (2006) Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173: 195–206

    PubMed  CAS  Google Scholar 

  • Blower MD, Karpen GH (2001) The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3: 730–739

    PubMed  CAS  Google Scholar 

  • Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2: 319–330

    PubMed  CAS  Google Scholar 

  • Bosch A, Suau P (1995) Changes in core histone variant composition in differentiating neurons: the roles of differential turnover and synthesis rates. Eur J Cell Biol 68: 220–225

    PubMed  CAS  Google Scholar 

  • Boulard M, Gautier T, Mbele GO, Gerson V, Hamiche A, Angelov D, Bouvet P, Dimitrov S (2006) The NH2 tail of the novel histone variant H2BFWT exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Mol Cell Biol 26: 1518–1526

    PubMed  CAS  Google Scholar 

  • Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276: 42462–42467

    PubMed  CAS  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A (2002) Genomic instability in mice lacking histone H2AX. Science 296: 922–927

    PubMed  CAS  Google Scholar 

  • Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA, Eckhaus M, Ried T, Bonner WM, Nussenzweig A (2003a) H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114: 371–383

    CAS  Google Scholar 

  • Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, Bonner RF, Bonner WM, Nussenzweig A (2003b) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5: 675–679

    CAS  Google Scholar 

  • Chadwick BP, Willard HF (2001a) Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant. Hum Mol Genet 10: 1101–1113

    CAS  Google Scholar 

  • Chadwick BP, Willard HF (2001b) A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 152: 375–384

    CAS  Google Scholar 

  • Chadwick BP, Willard HF (2002) Cell cycle-dependent localization of macroH2A in chromatin of the inactive X chromosome. J Cell Biol 157: 1113–1123

    PubMed  CAS  Google Scholar 

  • Chadwick BP, Valley CM, Willard HF (2001) Histone variant macroH2A contains two distinct macrochromatin domains capable of directing macroH2A to the inactive X chromosome. Nucleic Acids Res. 29: 2699–2705

    PubMed  CAS  Google Scholar 

  • Chevaillier P, Mauro N, Feneux D, Jouannet P, David G (1987) Anomalous protein complement of sperm nuclei in some infertile men. Lancet 2: 806–807

    PubMed  CAS  Google Scholar 

  • Choo JH, Kim JD, Chung JH, Stubbs L, Kim J (2006) Allele-specific deposition of macroH2A1 in imprinting control regions. Hum Mol Genet 15: 717–724

    PubMed  CAS  Google Scholar 

  • Churikov D, Siino J, Svetlova M, Zhang K, Gineitis A, Morton Bradbury E, Zalensky A (2004) Novel human testis-specific histone H2B encoded by the interrupted gene on the X chromosome. Genomics 84: 745–756

    PubMed  CAS  Google Scholar 

  • Clarkson MJ, Wells JR, Gibson F, Saint R, Tremethick DJ (1999) Regions of variant histone His2AvD required for Drosophila development. Nature 399: 694–697

    PubMed  CAS  Google Scholar 

  • Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393: 599–601

    PubMed  CAS  Google Scholar 

  • Costanzi C, Pehrson JR (2001) MacroH2A2, a new member of the macroH2A core histone family. J Biol Chem 276: 21776–21784

    PubMed  CAS  Google Scholar 

  • Dhillon N, Kamakaka RT (2000) A histone variant, Htz1p, and a Sir1p-like protein, Esc2p, mediate silencing at HMR. Mol Cell 6: 769–780

    PubMed  CAS  Google Scholar 

  • Doenecke D, Albig W, Bode C, Drabent B, Franke K, Gavenis K, Witt O (1997) Histones: genetic diversity and tissue-specific gene expression. Histochem Cell Biol 107: 1–10

    PubMed  CAS  Google Scholar 

  • Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Cote J (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16: 979–990

    PubMed  CAS  Google Scholar 

  • Doyen CM, An W, Angelov D, Bondarenko V, Mietton F, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S (2006) Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol Cell Biol 26: 1156–1164

    PubMed  CAS  Google Scholar 

  • Faast R, Thonglairoam V, Schulz TC, Beall J, Wells JR, Taylor H, Matthaei K, Rathjen PD, Tremethick DJ, Lyons I (2001) Histone variant H2A.Z is required for early mammalian development. Curr Biol 11: 1183–1187

    PubMed  CAS  Google Scholar 

  • Fan JY, Gordon F, Luger K, Hansen JC, Tremethick DJ (2002) The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat Struct Biol 9:172–176

    PubMed  CAS  Google Scholar 

  • Fan JY, Rangasamy D, Luger K, Tremethick DJ (2004) H2A.Z alters the nucleosome surface to promote HP1alpha-mediated chromatin fiber folding. Mol Cell 16: 655–661

    PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, Naka K, Xia Z, Camerini-Otero RD, Motoyama N, Carpenter PB, Bonner WM, Chen J, Nussenzweig A (2002) DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol 4: 993–997

    PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4: 497–508

    PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair (Amst) 3: 959–967

    CAS  Google Scholar 

  • Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8:458–469

    PubMed  CAS  Google Scholar 

  • Foresta C, Zorzi M, Rossato M, Varotto A (1992) Sperm nuclear instability and staining with aniline blue: abnormal persistence of histones in spermatozoa in infertile men. Int J Androl 15: 330–337

    PubMed  CAS  Google Scholar 

  • Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, Nakayama T, Oshimura M (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6: 784–791

    PubMed  CAS  Google Scholar 

  • Furuyama T, Dalal Y, Henikoff S (2006) Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Natl Acad Sci U S A 103: 6172–6177

    PubMed  CAS  Google Scholar 

  • Gautier T, Abbott DW, Molla A, Verdel A, Ausio J, Dimitrov S (2004) Histone variant H2ABbd confers lower stability to the nucleosome. EMBO Rep 5: 715–720

    PubMed  CAS  Google Scholar 

  • Gineitis AA, Zalenskaya IA, Yau PM, Bradbury EM, Zalensky AO (2000) Human sperm telomere-binding complex involves histone H2B and secures telomere membrane attachment. J Cell Biol 151: 1591–1598

    PubMed  CAS  Google Scholar 

  • Govin J, Caron C, Rousseaux S, Khochbin S (2005) Testis-specific histone H3 expression in somatic cells. Trends Biochem Sci 30: 357–359

    PubMed  CAS  Google Scholar 

  • Grigoryev SA, Nikitina T, Pehrson JR, Singh PB, Woodcock CL (2004) Dynamic relocation of epigenetic chromatin markers reveals an active role of constitutive heterochromatin in the transition from proliferation to quiescence. J Cell Sci 117: 6153–6162

    PubMed  CAS  Google Scholar 

  • Guillemette B, Bataille AR, Gevry N, Adam M, Blanchette M, Robert F, Gaudreau L (2005) Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol, 3, e384

    PubMed  Google Scholar 

  • Henikoff S, Ahmad K (2005) Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 21, 133–153

    PubMed  CAS  Google Scholar 

  • Henikoff S, Furuyama T, Ahmad K (2004) Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 20: 320–326

    PubMed  CAS  Google Scholar 

  • Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10: 303–315

    PubMed  CAS  Google Scholar 

  • Hofmann N, Hilscher B (1991) Use of aniline blue to assess chromatin condensation in morphologically normal spermatozoa in normal and infertile men. Hum Reprod 6: 979–982

    PubMed  CAS  Google Scholar 

  • Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci U S A 97: 1148–1153

    PubMed  CAS  Google Scholar 

  • Kamakaka RT, Biggins S (2005) Histone variants: deviants? Genes Dev 19: 295–310

    PubMed  CAS  Google Scholar 

  • Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F, Bycroft M, Ladurner AG (2005) The macro domain is an ADP-ribose binding module. Embo J 24: 1911–1920

    PubMed  CAS  Google Scholar 

  • Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner AG (2005) Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 12: 624–625

    PubMed  CAS  Google Scholar 

  • Ladurner AG (2003) Inactivating chromosomes: a macro domain that minimizes transcription. Mol Cell 12: 1–3

    PubMed  CAS  Google Scholar 

  • Larochelle M, Gaudreau L (2003) H2A.Z has a function reminiscent of an activator required for preferential binding to intergenic DNA. Embo J 22: 4512–4522

    PubMed  CAS  Google Scholar 

  • Li B, Pattenden SG, Lee D, Gutierrez J, Chen J, Seidel C, Gerton J, Workman JL (2005) Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad Sci U S A 102: 18385–18390

    PubMed  CAS  Google Scholar 

  • Loyola A, Almouzni G (2004) Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta 1677: 3–11

    PubMed  CAS  Google Scholar 

  • Luger K, Mäder, AW., Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260

    PubMed  CAS  Google Scholar 

  • Ma Y, Jacobs SB, Jackson-Grusby L, Mastrangelo MA, Torres-Betancourt JA, Jaenisch R, Rasmussen TP (2005) DNA CpG hypomethylation induces heterochromatin reorganization involving the histone variant macroH2A. J Cell Sci 118: 1607–1616

    PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10: 882–891

    PubMed  CAS  Google Scholar 

  • Martzen MR, McCraith SM, Spinelli SL, Torres FM, Fields S, Grayhack EJ, Phizicky EM (1999) A biochemical genomics approach for identifying genes by the activity of their products. Science 286: 1153–1155

    PubMed  CAS  Google Scholar 

  • Meneghini MD, Wu M, Madhani HD (2003) Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112: 725–736

    PubMed  CAS  Google Scholar 

  • Mermoud JE, Costanzi C, Pehrson JR, Brockdorff N (1999) Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J Cell Biol 147: 1399–1408

    PubMed  CAS  Google Scholar 

  • Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37: 1090–1097

    PubMed  CAS  Google Scholar 

  • Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2003) ATP-Driven Exchange of Histone H2AZ Variant Catalyzed by SWR1 Chromatin Remodeling Complex. Science

    Google Scholar 

  • Monni O, Knuutila S (2001) 11q deletions in hematological malignancies. Leuk Lymphoma 40: 259–266

    Article  PubMed  CAS  Google Scholar 

  • Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119: 767–775

    PubMed  CAS  Google Scholar 

  • Moss SB, Challoner PB, Groudine M (1989) Expression of a novel histone 2B during mouse spermiogenesis. Dev Biol 133: 83–92

    PubMed  CAS  Google Scholar 

  • Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153: 1209–1226

    PubMed  CAS  Google Scholar 

  • Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol

    Google Scholar 

  • Palmer DK, O’Day K, Margolis RL (1989) Biochemical analysis of CENP-A, a centromeric protein with histone-like properties. Prog Clin Biol Res 318: 61–72

    PubMed  CAS  Google Scholar 

  • Palmer DK, O’Day K, Margolis RL (1990) The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 100: 32–36

    PubMed  CAS  Google Scholar 

  • Pandey NB, Marzluff WF (1987) The stem-loop structure at the 3’ end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol Cell Biol 7: 4557–4559

    PubMed  CAS  Google Scholar 

  • Pehrson J, Fuji RN (1998) Evolutionary conservation of histone macroH2A subtypes and domains. Nucl Acids Res 26: 2837–2842

    PubMed  CAS  Google Scholar 

  • Pehrson JR, Fried VA (1992) MacroH2A, a core histone containing a large nonhistone region. Science 257: 1398–1400

    PubMed  CAS  Google Scholar 

  • Perche P, Vourch C, Souchier C, Robert-Nicoud M, Dimitrov S, Khochbin C (2000) Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr Biol 10: 1531–1534

    PubMed  CAS  Google Scholar 

  • Poccia DL, Green GR (1992) Packaging and unpackaging the sea urchin sperm genome. Trends Biochem Sci 17: 223–227

    PubMed  CAS  Google Scholar 

  • Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ, Madhani HD (2005) Histone Variant H2A.Z Marks the 5’ Ends of Both Active and Inactive Genes in Euchromatin. Cell 123: 233–248

    PubMed  CAS  Google Scholar 

  • Rangasamy D, Berven L, Ridgway P, Tremethick DJ (2003) Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. Embo J 22: 1599–1607

    PubMed  CAS  Google Scholar 

  • Rangasamy D, Greaves I, Tremethick DJ (2004) RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat Struct Mol Biol 11: 650–655

    PubMed  CAS  Google Scholar 

  • Rasmussen TP, Mastrangelo MA, Eden A, Pehrson JR, Jaenisch R (2000) Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J Cell Biol 150: 1189–1198

    PubMed  CAS  Google Scholar 

  • Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12: 162–169

    PubMed  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868

    PubMed  CAS  Google Scholar 

  • Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146: 905–916

    PubMed  CAS  Google Scholar 

  • Santisteban MS, Kalashnikova T, Smith MM (2000) Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes. Cell 103: 411–422

    PubMed  CAS  Google Scholar 

  • Sarma K, Reinberg D (2005) Histone variants meet their match. Nat Rev Mol Cell Biol 6: 139–149

    PubMed  CAS  Google Scholar 

  • Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753

    PubMed  CAS  Google Scholar 

  • Siino JS, Nazarov IB, Svetlova MP, Solovjeva LV, Adamson RH, Zalenskaya IA, Yau PM, Bradbury EM, Tomilin NV (2002) Photobleaching of GFP-labeled H2AX in chromatin: H2AX has low diffusional mobility in the nucleus. Biochem Biophys Res Commun 297: 1318–1323

    PubMed  CAS  Google Scholar 

  • Stiff T, Shtivelman E, Jeggo P, Kysela B (2004) AHNAK interacts with the DNA ligase IV-XRCC4 complex and stimulates DNA ligase IV-mediated double-stranded ligation. DNA Repair (Amst) 3: 245–256

    CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41–45

    PubMed  CAS  Google Scholar 

  • Suto RK, Clarkson MJ, Tremethick DJ, Luger K (2000) Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Struct. Biol. 7: 1121–1124

    CAS  Google Scholar 

  • Swaminathan J, Baxter EM, Corces VG (2005) The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev 19: 65–76

    PubMed  CAS  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116: 51–61

    PubMed  CAS  Google Scholar 

  • Taneja N, Davis M, Choy JS, Beckett MA, Singh R, Kron SJ, Weichselbaum RR (2004) Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. J Biol Chem 279: 2273–2280

    PubMed  CAS  Google Scholar 

  • Tanphaichitr N, Sobhon P, Taluppeth N, Chalermisarachai P (1978) Basic nuclear proteins in testicular cells and ejaculated spermatozoa in man. Exp Cell Res 117: 347–356

    PubMed  CAS  Google Scholar 

  • Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, Ochiai T, Yoda K, Nomura F (2003) Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 63: 3511–3516

    PubMed  CAS  Google Scholar 

  • Tsanev R, Russev G, Pashev I, Zlatanova J (1993) Replication and transcription of chromatin. CRC Press, Boca Raton, FI

    Google Scholar 

  • Unni E, Zhang Y, Kangasniemi M, Saperstein W, Moss SB, Meistrich ML (1995) Stage-specific distribution of the spermatid-specific histone 2B in the rat testis. Biol Reprod 53: 820–826

    PubMed  CAS  Google Scholar 

  • van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119: 777–788

    PubMed  Google Scholar 

  • van Holde K (1988) Chromatin. Springer-Verlag KG, Berlin, Germany

    Google Scholar 

  • Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TJ, Goldberg ML, Yokomori K, Earnshaw WC, Sullivan KF, Brinkley BR (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114: 3529–3542

    PubMed  Google Scholar 

  • van Roijen HJ, Ooms MP, Spaargaren MC, Baarends WM, Weber RF, Grootegoed JA, Vreeburg JT (1998) Immunoexpression of testis-specific histone 2B in human spermatozoa and testis tissue. Hum Reprod 13: 1559–1566

    PubMed  Google Scholar 

  • Yoda K, Ando S, Morishita S, Houmura K, Hashimoto K, Takeyasu K, Okazaki T (2000) Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci U S A 97: 7266–7271

    PubMed  CAS  Google Scholar 

  • Zhang H, Roberts DN, Cairns BR (2005a) Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123: 219–231

    CAS  Google Scholar 

  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD (2005b) Formation of MacroH2A-containing Senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8: 19–30

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Boulard, M., Bouvet, P., Kundu, T.K., Dimitrov, S. (2007). Histone Variant Nucleosomes. In: Kundu, T.K., et al. Chromatin and Disease. Subcellular Biochemistry, vol 41. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5466-1_4

Download citation

Publish with us

Policies and ethics