Skip to main content

Histone Acetylation And Methylation

Combinatorial players for transcriptional regulation

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 41))

Post-synthetic modification of histone proteins in chromatin architecture plays a central role in the epigenetic regulation of transcription. Histone acetylation and methylation are the two major modifications that function as a specific transcription regulator in response to various cellular signals. Albeit the mechanism of action of these modifications in transcription is not well understood, recent discovery of histone acetyltransferase (HAT) and methyltransferase (HMT) activities within transcriptional regulators has an important implication for histone modification to be a key player for the precise regulation of transcription processes. Here, we discuss recent advances made on histone acetylation and methylation as a fundamental process to modulate gene transcription, with a particular emphasis on their combinatorial effects in transcriptional control

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agalioti T, Chen G, Thanos D (2002) Deciphering the transcriptional histone acetylation code for a human gene. Cell 111: 381-392

    PubMed  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51: 786-794

    PubMed  CAS  Google Scholar 

  • An W, Kim J, Roeder RG (2004) Ordered cooperative functions of PRMY1, p300, and CARM1 in transcriptional activation by p53. Cell 117: 1-20

    Google Scholar 

  • An W, Palhan VB, Karymov MA, Leuba SH, Roeder RG (2002) Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin. Mol Cell 9: 811-821

    PubMed  CAS  Google Scholar 

  • Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK (2004a) Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 279: 33716-33726

    CAS  Google Scholar 

  • Balasubramanyam K, Varier RA, Altaf M, Swaminathan, V, Siddappa NB, Ranga U, Kundu TK (2004b) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279: 51163-51171

    CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384: 641-643

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120-124

    PubMed  CAS  Google Scholar 

  • Bauer UM, Daujat S, Nielsen SJ, Nightingale K, Kouzarides T (2002) Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 3: 39-44

    PubMed  CAS  Google Scholar 

  • Berger SL (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12: 142-148

    PubMed  CAS  Google Scholar 

  • Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114: 2363-2373

    PubMed  CAS  Google Scholar 

  • Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR (1999) Regulation of transcription by a protein methyltransferase. Science 284: 2174-2177

    PubMed  CAS  Google Scholar 

  • Chie L, Cook JR, Chung D, Hoffmann R, Yang Z, Kim Y, Pestka S, Pincus MR (2003) A protein methyl transferase, PRMT5, selectively blocks oncogenic ras-p21 mitogenic signal transduction. Ann Clin Lab Sci 33: 200-207

    PubMed  CAS  Google Scholar 

  • Coutts AS, La Thangue NB (2005) The p53 response: emerging levels of co-factor complexity. Biochem Biophys Res Commun 331: 778-785

    PubMed  CAS  Google Scholar 

  • Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, Kouzarides T (2004) Histone deimination antagonizes arginine methylation. Cell 118: 545-553

    PubMed  CAS  Google Scholar 

  • Daujat S, Bauer UM, Shah V, Turner B, Berger S, Kouzarides T (2002) Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12: 2090-2097

    PubMed  CAS  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370: 737-749

    PubMed  Google Scholar 

  • Deckert J, Struhl K (2001) Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol 21: 2726-2735

    Google Scholar 

  • Dion MF, Altschuler SJ, Wu LF, Rando OJ (2005) Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci USA 102: 5501-5506

    PubMed  CAS  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401: 188-193

    PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15: 172-183

    PubMed  CAS  Google Scholar 

  • Garcia-Ramirez M, Rocchini C, Ausio J (1995) Modulation of chromatin folding by histone acetylation. J Biol Chem 270: 17923-17928

    PubMed  CAS  Google Scholar 

  • Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, Daigo Y, Russell P, Wilson A, Sowter HM, Delhanty JD, Ponder BA, Kouzarides T, Caldas C (2000) Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24: 300-303

    PubMed  CAS  Google Scholar 

  • Georges SA, Kraus WL, Luger K, Nyborg JK, Laybourn PJ (2002) p300-mediated tax transactivation from recombinant chromatin: histone tail deletion mimics coactivator function. Mol Cell Biol 22: 127-137

    Google Scholar 

  • Gibbons RJ (2005) Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Hum Mol Genet 14: R85-92

    PubMed  CAS  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363: 15-23

    PubMed  CAS  Google Scholar 

  • Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14: 1553-1577

    PubMed  CAS  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349-352

    PubMed  CAS  Google Scholar 

  • Grunstein M, Hecht A, Fisher-Adams G, Wan J, Mann RK, Strahl-Bolsinger S, Laroche T, and Gasser S (1995) The regulation of euchromatin and heterochromatin by histones in yeast. J Cell Sci Suppl 19: 29-36

    Google Scholar 

  • Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 8: 731-740

    Google Scholar 

  • Hansen JC (2002) Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct 31: 361-392

    PubMed  CAS  Google Scholar 

  • Hansen JC, Tse C, Wolffe AP (1998) Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37: 17637-17641

    PubMed  CAS  Google Scholar 

  • Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ, Workman JL (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111: 369-379

    PubMed  CAS  Google Scholar 

  • Hess JL (2004) MLL: a histone methyltransferase disrupted in leukemia. Trends Mol Med 10: 500-507

    PubMed  CAS  Google Scholar 

  • Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432: 406-411

    PubMed  CAS  Google Scholar 

  • Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102: 463-473

    PubMed  CAS  Google Scholar 

  • Ito, A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E, Yao TP (2001) p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 20: 1331-1340

    PubMed  CAS  Google Scholar 

  • Jacobs SA, Khorasanizadeh S (2002) Structure of the HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295: 2080-2083

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074-1079

    PubMed  CAS  Google Scholar 

  • Kanno T, Kanno Y, Siegel RM, Jang MK, Lenardo MJ, Ozato K (2004) Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 13: 33-43

    PubMed  CAS  Google Scholar 

  • Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100: 11606-11611

    PubMed  CAS  Google Scholar 

  • Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98: 285-294

    PubMed  CAS  Google Scholar 

  • Kourmouli N, Jeppesen P, Mahadevhaiah S, Burgoyne P, Wu R, Gilbert DM, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Shi W, Fundele R, Singh PB (2004) Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J Cell Sci 117: 2491-2501

    PubMed  CAS  Google Scholar 

  • Kouzarides T (2002) Histone methylation in transcriptional control. Curr Opin Genet Dev 12: 198-209

    PubMed  CAS  Google Scholar 

  • Kundu TK, Palhan VB, Wang Z, An W, Cole PA, Roeder RG (2000) Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol Cell 6: 551-561

    PubMed  CAS  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 8: 615-626

    Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116-120

    PubMed  CAS  Google Scholar 

  • Lau OD, Kundu TK, Soccio RE, Ait-Si-Ali S, Khalil EM, Vassilev A, Wolffe AP, Nakatani Y, Roeder RG, Cole PA (2000) HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell 5: 589-595

    PubMed  CAS  Google Scholar 

  • Lee DY, Teyssier C, Strahl BD, Stallcup MR (2005) Role of protein methylation in regulation of transcription. Endocr Rev 26: 147-170

    PubMed  CAS  Google Scholar 

  • Levenstein ME, Kadonaga JT (2002) Biochemical analysis of chromatin containing recombinant Drosophila core histones. J Biol Chem 277: 8749-8754

    PubMed  CAS  Google Scholar 

  • Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA, Jones PA (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci USA 101: 7357-7362

    PubMed  CAS  Google Scholar 

  • Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD, Marmorstein R, Berger SL (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5: 917-926

    PubMed  CAS  Google Scholar 

  • Loyola A, LeRoy G, Wang YH, Reinberg D (2001) Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription. Genes Dev 15: 2837-2851

    PubMed  CAS  Google Scholar 

  • Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev. 8: 140-146

    PubMed  CAS  Google Scholar 

  • Luger K, Maeder AW, Richmond RK, Sargent DF, Richmond TJ (1997) X-ray structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-259

    PubMed  CAS  Google Scholar 

  • Marks PA, Miller T, Richon VM (2003) Histone deacetylases. Curr Opin Pharmacol 3: 344-351

    PubMed  CAS  Google Scholar 

  • Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T, Akiyama M, Chauhan D, Munshi N, Gu X, Bailey C, Joseph M, Libermann TA, Richon VM, Marks PA, Anderson KC (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101: 540-545

    PubMed  CAS  Google Scholar 

  • Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T, Workman J, Wang L, Berger SL, Kouzarides T, Nakatani Y, Allis CD (1996) The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261-1270

    PubMed  CAS  Google Scholar 

  • Mosammaparast N, Guo Y, Shabanowitz J, Hunt DF, Pemberton LF (2002) Pathways mediating the nuclear import of histones H3 and H4 in yeast. J Biol Chem 277: 862-868

    PubMed  CAS  Google Scholar 

  • Mosammaparast N, Jackson KR, Guo Y, Brame CJ, Shabanowitz J, Hunt DF, Pemberton LF (2001) Nuclear import of histone H2A and H2B is mediated by a network of karyopherins. J Cell Biol 153: 251-262

    PubMed  CAS  Google Scholar 

  • Muraoka M, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Shitara N, Chong JM, Iwama T, Miyaki M (1996) p300 gene alterations in colorectalgastric carcinomas. Oncogene 12: 1565-1569

    PubMed  CAS  Google Scholar 

  • Murata T, Kurokawa R, Krones A, Tatsumi K, Ishii M, Taki T, Masuno M, Ohashi H, Yanagisawa M, Rosenfeld MG, Glass CK, Hayashi Y (2001) Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein-Taybi syndrome. Hum Mol Genet 10: 1071-1076

    PubMed  CAS  Google Scholar 

  • Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ, Herceg Z (2006) Histone acetylation by Trrap-Tip60 modulates loading of repair proteinsrepair of DNA double-strand breaks. Nat Cell Biol 8: 91-99

    PubMed  CAS  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110-113

    PubMed  CAS  Google Scholar 

  • Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, Reinberg D (2002) Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 16: 479-489

    PubMed  CAS  Google Scholar 

  • Noma K, Allis CD, Grewal SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293: 1150-1155

    PubMed  CAS  Google Scholar 

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetylases. Cell 87: 953-959

    PubMed  CAS  Google Scholar 

  • Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107: 323-337

    PubMed  CAS  Google Scholar 

  • Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14: R546-551

    PubMed  CAS  Google Scholar 

  • Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ, Breuning MH (1995) Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376: 348-351

    PubMed  CAS  Google Scholar 

  • Pray-Grant MG, Daniel JA, Schieltz D, Yates JR 3rd, Grant PA (2005) Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433: 434-438

    PubMed  CAS  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593-599

    PubMed  CAS  Google Scholar 

  • Ren Q, Gorovsky MA (2001) Histone H2A.Z acetylation modulates an essential charge patch. Mol Cell 7: 1329-1335

    PubMed  CAS  Google Scholar 

  • Roh TY, Cuddapah S, Zhao K (2005) Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev 19: 542-552

    PubMed  CAS  Google Scholar 

  • Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70: 81-120

    PubMed  CAS  Google Scholar 

  • Sanders SL, Portoso M, Mata J, Bahler J, Allshire RC, Kouzarides T (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119: 603-614

    PubMed  CAS  Google Scholar 

  • Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419: 407-411

    PubMed  CAS  Google Scholar 

  • Santos-Rosa H, Schneider R, Bernstein BE, Karabetsou N, Morillon A, Weise C, Schreiber SL, Mellor J, Kouzarides T (2003) Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol Cell 12: 1325-1332

    PubMed  CAS  Google Scholar 

  • Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18: 1251-1262

    PubMed  CAS  Google Scholar 

  • Schurter BT, Koh SS, Chen D, Bunick GJ, Harp JM, Hanson BL, Henschen-Edman A, Mackay DR, Stallcup MR, Aswad DW (2001) Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40: 5747-5756

    PubMed  CAS  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119: 941-953

    PubMed  CAS  Google Scholar 

  • Shilatifard A (2006) Chromatin Modifications by Methylation and Ubiquitination: Implications in the Regulation of Gene Expression. Annu Rev Biochem 75: 243-269

    PubMed  CAS  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol. Mol Biol Rev 64: 435-459

    CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41-45

    PubMed  CAS  Google Scholar 

  • Suganuma T, Kawabata M, Ohshima T, Ikeda MA (2002) Growth suppression of human carcinoma cells by reintroduction of the p300 coactivator. Proc Natl Acad Sci USA 99: 13073-13078

    PubMed  CAS  Google Scholar 

  • Timmermann S, Lehrmann H, Polesskaya A, Harel-Bellan A (2001) Histone acetylation and disease. Cell Mol Life Sci 58: 728-736

    PubMed  CAS  Google Scholar 

  • Tse C, Sera T, Wolffe AP, Hansen JC (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 18: 4629-4638

    Google Scholar 

  • Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22: 836-845

    PubMed  CAS  Google Scholar 

  • van Holde KE (1988) Chromatin. Springer-Verlag, New York

    Google Scholar 

  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419: 624-629

    PubMed  CAS  Google Scholar 

  • Wade PA, Pruss D, Wolffe AP (1997) Trends Biochem Sci 22: 128-132

    PubMed  CAS  Google Scholar 

  • Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, Zhang Y (2001a) Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 8: 1207-1217

    CAS  Google Scholar 

  • Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P, Zhang Y (2001b) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293: 853-857

    CAS  Google Scholar 

  • Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306: 279-283

    PubMed  CAS  Google Scholar 

  • Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125: 467-481

    PubMed  CAS  Google Scholar 

  • Xu W, Edmondson DG, Evrard YA, Wakamiya M, Behringer RR, Roth SY (2000) Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nat Genet 26: 229-232

    PubMed  CAS  Google Scholar 

  • Yamane K, Toumazou C, Tsukada YI, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) JHDM2A, a JmjC-Containing H3K9 Demethylase, Facilitates Transcription Activation by Androgen Receptor. Cell 125: 483-495

    PubMed  CAS  Google Scholar 

  • Yang XJ, Seto E (2003) Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr Opin Genet Dev 13: 143-153

    PubMed  CAS  Google Scholar 

  • Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5: 37-50

    PubMed  CAS  Google Scholar 

  • Zeng L, Zhou MM (2002) Bromodomain: an acetyl-lysine binding domain. FEBS letters 513: 124-128

    PubMed  CAS  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15: 2343-2360

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

An, W. (2007). Histone Acetylation And Methylation. In: Kundu, T.K., et al. Chromatin and Disease. Subcellular Biochemistry, vol 41. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5466-1_16

Download citation

Publish with us

Policies and ethics