Skip to main content

Aberrant Forms of Histone Acetyltransferases in Human Disease

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 41))

One of the major mechanisms through which eukaryotic cells respond to developmental and environmental signals is by changing their gene expression patterns. This complex and tightly regulated process is largely regulated at the level of RNA polymerase II-mediated transcription. Within this process an important class of transcriptional regulators are the histone acetyltransferases (HATs), proteins that acetylate histones and non-histone substrates. While hyperacetylation of histones is generally associated with active genes, the effect of acetylation of nonhistone proteins varies between substrates resulting in for example alterations in (sub-nuclear) protein localization or protein stability. Given the central role of HATs in transcriptional regulation and other cellular processes, it may not be surprising that genetic alterations in the genes encoding HATs, resulting in aberrant forms of these regulatory proteins, have been linked with various human diseases, including congenital developmental disorders and various forms of cancer, including leukaemia. Here we will review mutations found in genes encoding human HATs and discuss the (putative) functional consequences on the function of these proteins. So far the lessons learned from naturally occurring mutations in humans have proven to be invaluable and recapitulating such genetic alterations in various experimental systems will extend our knowledge even further. This seems particularly relevant given the wide range of diseases in which acetyltransferases have been implicated and may help to open up new therapeutic avenues

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasland R, Gibson TJ, Stewart AF (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20: 56–59

    PubMed  CAS  Google Scholar 

  • Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D (2000) Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103: 667–678

    PubMed  CAS  Google Scholar 

  • Ait-Si-Ali S, Ramirez S, Barre FX, Dkhissi F, Magnaghi-Jaulin L, Girault JA, Robin P, Knibiehler M, Pritchard LL, Ducommun B, Trouche D, Harel-Bellan A (1998) Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E 1 A. Nature 396: 184–186

    PubMed  CAS  Google Scholar 

  • Ait-Si-Ali S, Carlisi D, Ramirez S, Upeguí-Gonzalez LC, Duquet A, Robin P, Rudkin B, Harel-Bellan A, Trouche D (1999) Phosphorylation by p44 MAP KinaseJERKl stimulates CBP histone acetyl-transferase activity in vitro. Biochem Biophys Res Commun 262: 157–162

    PubMed  CAS  Google Scholar 

  • Arany Z, Sellers WR, Livingston DM, Eckner R (1994) E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 77: 799–800

    PubMed  CAS  Google Scholar 

  • Arany Z, Newsome D, Oldread E, Livingston DM, Eckner R (1995) A family of transcriptional adaptor proteins targeted by the ElA oncoprotein. Nature 374: 81–84

    PubMed  CAS  Google Scholar 

  • Armstrong SA, Staunton JE, Silverrnan LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30: 41–47

    PubMed  CAS  Google Scholar 

  • Arteaga CL (2006) Inhibition of TGFbeta signaling in cancer therapy. Curr Opin Genet Dev 16: 30–37

    PubMed  CAS  Google Scholar 

  • Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS, Kelly K (1997) Recruitment of p300lCBP in p53-dependent signal pathways. Cell 89: 1175–1184

    PubMed  CAS  Google Scholar 

  • Ayton PM, Cleary ML (2001) Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 20: 5695–5707

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643

    PubMed  CAS  Google Scholar 

  • Barker N, Morin PJ, Clevers H (2000) The Yin-Yang of TCFIbeta-catenin signaling. Adv Cancer Res 77: 1–24

    Article  PubMed  CAS  Google Scholar 

  • Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD, Berger SL (2001) Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8: 1243–1254

    PubMed  CAS  Google Scholar 

  • Bartsch O, Locher K, Meinecke P, Kress W, Seemanova E, Wagner A, Ostermann K, Rodel G (2002) Molecular studies in 10 cases of Rubinstein-Taybi syndrome, including a mild variant showing a missense mutation in codon 1175 of CREBBP. J Med Genet 39: 496–501

    PubMed  CAS  Google Scholar 

  • Bartsch O, Schmidt S, Richter M, Morlot S, Seemanova E, Wiebe G, Rasi S (2005) DNA sequencing of CREBBP demonstrates mutations in 56% of patients with Rubinstein-Taybi syndrome (RSTS) and in another patient with incomplete RSTS. Hum Genet 117: 485–493

    PubMed  CAS  Google Scholar 

  • Belandia B, Parker MG (2000) Functional interaction between the p 160 coactivator proteins and the transcriptional enhancer factor family of transcription factors. J Biol Chem 275: 30801–30805

    PubMed  CAS  Google Scholar 

  • Billio A, Steer EJ, Pianezze G, Svaldi M, Casin M, Amato B, Coser P, Cross NC (2002) A further case of acute myeloid leukaemia with inv(8)(p1 lq13) and MOZ-TIF2 fusion. Haematologica 87, ECRI 5

    Google Scholar 

  • Blobel GA (2000) CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood 95: 745–755

    PubMed  CAS  Google Scholar 

  • Bordoli L, Husser S, Luthi U, Netsch M, Osmani H, Eckner R (200la) Functional analysis of the p300 acetyltransferase domain: the PHD finger of p300 but not of CBP is dispensable for enzymatic activity. Nucleic Acids Res 29: 4462–4471

    Google Scholar 

  • Bordoli L, Netsch M, Luthi U, Lutz W, Eckner R (2001b) Plant orthologs of p300lCBP: conservation of a core domain in metazoan p300lCBP acetyltransferaserelated proteins. Nucleic Acids Res 29: 589–597

    CAS  Google Scholar 

  • Borrow J, Stanton VP, Jr., Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dube I, Frischauf AM, Horsman D, Mitelrnan F, Volinia S, Watmore AE, Housman DE (1996) The translocation t(8; 16)(p 1 1;p 13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein [see comments]. Nat Genet 14: 33–41

    PubMed  CAS  Google Scholar 

  • Brand M, Yamamoto K, Staub A, Tora L (1999) Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J Biol Chem 274: 18285–18289

    PubMed  CAS  Google Scholar 

  • Bristow CA, Shore P (2003) Transcriptional regulation of the human MIP-lalpha promoter by RUNXl and MOZ. Nucleic Acids Res 31: 2735–2744

    PubMed  CAS  Google Scholar 

  • Bryan EJ, Jokubaitis VJ, Chamberlain NL, Baxter SW, Dawson E, Choong DY, Campbell IG (2002) Mutation analysis of EP300 in colon, breast and ovarian carcinomas. Int J Cancer 102: 137–141

    PubMed  CAS  Google Scholar 

  • Cairns BR (2001) Emerging roles for chromatin remodeling in cancer biology. Trends Cell Biol 11: S15–S21

    PubMed  CAS  Google Scholar 

  • Carapeti M, Aguiar RC, Goldman JM, Cross NC (1998) A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91: 3127–3133

    PubMed  CAS  Google Scholar 

  • Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pebusque MJ (2000) MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes. Cancer 28: 138–144

    CAS  Google Scholar 

  • Champagne N, Bertos NR, Pelletier N, Wang AH, Vezmar M, Yang Y, Heng HH, Yang XJ (1999a) Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 274: 28528–28536

    CAS  Google Scholar 

  • Champagne N, Bertos NR, Pelletier N, Wang AH, Vezmar M, Yang Y, Heng HH, Yang XJ (1999b) Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 274: 28528–28536

    CAS  Google Scholar 

  • Champagne N, Pelletier N, Yang XJ (2001) The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene 20: 404–409

    PubMed  CAS  Google Scholar 

  • Chan HM, La Thangue NB (2001) p300lCBP proteins: HATS for transcriptional bridges and scaffolds. J Cell Sci 114: 2363–2373

    PubMed  CAS  Google Scholar 

  • Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB (2001) Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol 3: 667–674

    PubMed  CAS  Google Scholar 

  • Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90: 569–580

    PubMed  CAS  Google Scholar 

  • Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR (1999a) Regulation of transcription by a protein methyltransferase. Science 284: 2174–2177

    CAS  Google Scholar 

  • Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM (1999b) Regulation of hormone induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 986: 75–686

    Google Scholar 

  • Cheung P, Allis CD, Sassone-Corsi P (2000a) Signaling to chromatin through histone modifications. Cell 103: 263–271

    CAS  Google Scholar 

  • Cheung WL, Briggs SD, Allis CD (2000b) Acetylation and chromosomal functions. Curr Opin Cell Biol 12: 326–333

    CAS  Google Scholar 

  • Chevillard-Briet M, Trouche D, Vandel L (2002) Control of CBP co-activating activity by arginine methylation. EMBO J 21: 5457–5466

    PubMed  CAS  Google Scholar 

  • Cho H, Orphanides G, Sun X, Yang XJ, Ogryzko V, Lees E, Nakatani Y, Reinberg D (1998) A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol 18: 5355–5363

    PubMed  CAS  Google Scholar 

  • Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855–859

    PubMed  CAS  Google Scholar 

  • Collins HM, Kindle KB, Matsuda S, Ryan C, Troke PJ, Kalkhoven E, Heery DM (2006) MOZ-TIF2 alters cofactor recruitment and histone modification at the RARbeta 2 promoter: Differential effects of MOZ fusion proteins on CBP- and MOZ dependent activators. J Biol Chem 281:17124–17133

    PubMed  CAS  Google Scholar 

  • Conti E, Izaurralde E (2005) Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol 17: 316–325

    PubMed  CAS  Google Scholar 

  • Cosma MP, Tanaka T, Nasmyth K (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97: 299–311

    PubMed  CAS  Google Scholar 

  • Coupry I, Roudaut C, Stef M, Delrue MA, Marche M, Burgelin J, Taine L, Cruaud C, Lacombe D, Arveiler B (2002) Molecular analysis of the CBP gene in 60 patients with Rubinstein-Taybi syndrome. J Med Genet 39: 415–421

    PubMed  CAS  Google Scholar 

  • Coutts AS, La Thangue NB (2005) The p53 response: emerging levels of co-factor complexity. Biochem Biophys Res Commun 331: 778–785

    PubMed  CAS  Google Scholar 

  • Crowley JA, Wang Y, Rapoport AP, Ning Y (2005) Detection of MOZ-CBP fusion in acute myeloid leukemia with 8;16 translocation. Leukemia 19: 2344–2345

    PubMed  CAS  Google Scholar 

  • Dash A, Gilliland DG (2001) Molecular genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol 14: 49–64

    PubMed  CAS  Google Scholar 

  • Dash AB, Williams IR, Kutok, JL, Tomasson MH, Anastasiadou E, Lindahl K, Li S, Van Etten RA, Borrow J, Housman D, Druker B, Gilliland DG (2002) A murine model of CML blast crisis induced by cooperation between BCRIABL and NUP98lHOXA9. Proc Natl Acad Sci U S A 99: 7622–7627

    PubMed  CAS  Google Scholar 

  • Debes JD, Sebo TJ, Lohse CM, Murphy LM, Haugen de AL, Tindall,D J (2003) p300 in prostate cancer proliferation and progression. Cancer Res 63: 7638–7640

    PubMed  CAS  Google Scholar 

  • Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR, Cross NC, Glass CK, Cleary ML, Gilliland DG (2003) MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3: 259–271

    PubMed  CAS  Google Scholar 

  • Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase brornodomain. Nature 399: 491–496

    PubMed  CAS  Google Scholar 

  • Dimartino JF, Cleary ML (1999) M11 rearrangements in haematological malignancies: lessons from clinical and biological studies. Br J Haematol 106: 614–626

    PubMed  CAS  Google Scholar 

  • Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21: 51–64

    PubMed  CAS  Google Scholar 

  • Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM (1994) Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8: 869–884

    PubMed  CAS  Google Scholar 

  • Fodde R, Smits R (2002) Cancer biology. A matter of dosage. Science 298: 761–763

    PubMed  CAS  Google Scholar 

  • Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, Daigo Y, Russell P, Wilson A, Sowter HM, Delhanty JD, Ponder BA, Kouzarides T, Caldas C (2000) Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24: 300–303

    PubMed  CAS  Google Scholar 

  • Giles RH, Peters DJ, Breuning MH (1998) Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 14: 178–183

    PubMed  CAS  Google Scholar 

  • Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden A W, Garcia-Wilson E, Perkins ND, Hay RT (2003) P300 transcriptional repression is mediated by SUMO modification. Mol Cell 11: 1043–1054

    PubMed  CAS  Google Scholar 

  • Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14: 1553–1577

    PubMed  CAS  Google Scholar 

  • Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX, Kurnar, S, Howley PM, Livingston DM (1998) p300lMDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 2: 405–415

    PubMed  CAS  Google Scholar 

  • Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H, Nakatani Y, Livingston DM (2003) Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300: 342–344

    PubMed  CAS  Google Scholar 

  • Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70

    PubMed  CAS  Google Scholar 

  • Hayashi Y (2000) The molecular genetics of recurring chromosome abnormalities in acute myeloid leukemia [In Process Citation]. Semin Hematol 37: 368–380

    PubMed  CAS  Google Scholar 

  • Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors [see comments]. Nature 387: 733–736

    PubMed  CAS  Google Scholar 

  • Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, Ohki M, Hayashi Y (1997) Adenoviral E 1 A-associated protein p300 is involved in acute myeloid leukemia with t(l1;22)(q23;q13). Blood 90: 4699–4704

    PubMed  CAS  Google Scholar 

  • Imamura T, Kakam N, Hibi S, Morimoto A, Fukushima Y, Ijuin I, Hada S, Kitabayashi I, Abe T, Imashuku S (2003) Rearrangement of the MOZ gene in pediatric therapy-related myelodysplastic syndrome with a novel chromosomal translocation t(2;8)(p23;pll). Genes Chromosomes. Cancer 36: 413–419

    CAS  Google Scholar 

  • Ionov,Y, Nowak N, Perucho M, Markowitz S, Cowell JK (2004) Manipulation of nonsense mediated decay identifies gene mutations in colon cancer Cells with microsatellite instability. Oncogene 23: 639–645

    PubMed  CAS  Google Scholar 

  • Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E, Yao TP (2001) p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 20: 1331–1340

    PubMed  CAS  Google Scholar 

  • Jacobson RH, Ladurner AG, King DS, Tjian R (2000) Structure and function of a human TAFII250 double bromodomain module. Science 288: 1422–1425.

    PubMed  CAS  Google Scholar 

  • Janknecht R, Nordheim A (1996) MAP kinase-dependent transcriptional coactivation by Elk-1 and its cofactor CBP. Biochem Biophys Res Commun 228: 831–837

    PubMed  CAS  Google Scholar 

  • Jason LJ, Moore SC, Lewis JD, Lindsey G, Ausio J (2002) Histone ubiquitination: a tagging tail unfolds? Bioessays 24, 166–174

    PubMed  CAS  Google Scholar 

  • Jeanmougin F, Wurtz JM, Le Douarin B, Chambon P, Losson R (1997) The bromodomain revisited. Trends Biochem Sci 22: 151–153

    PubMed  CAS  Google Scholar 

  • Kalkhoven E (2004) CBP and p300: HATS for different occasions. Biochem Pharmacol 68: 1145–1155

    PubMed  CAS  Google Scholar 

  • Kalkhoven E, Teunissen H, Houweling A, Verrijzer CP, Zantema A (2002) The PHD type zinc finger is an integral part of the CBP acetyltransferase domain. Mol Cell Biol 22: 1961–1970

    PubMed  CAS  Google Scholar 

  • Kalkhoven E, Roelfsema JH, Teunissen H, den Boer A, Ariyurek Y, Zantema A, Breuning MH, Hennekam RC, Peters DJ (2003) Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. Hum Mol Genet 12: 441–450

    PubMed  CAS  Google Scholar 

  • Kelly LM, Kutok, JL, Williams IR, Boulton CL, Amaral SM, Curley DP, Ley TJ, Gilliland DG (2002) PMLJRARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci U S A 99: 8283–8288

    PubMed  CAS  Google Scholar 

  • Kindle KB, Troke PJ, Collins HM, Matsuda S, Bossi D, Bellodi C, Kalkhoven E, Salomoni P, Pelicci PG, Minucci S, Heery DM (2005) MOZ-TIF2 inhibits transcription by nuclear receptors and p53 by impairment of CBP fimction. Mol Cell Biol 25: 988–1002

    PubMed  CAS  Google Scholar 

  • Kishimoto M, Kohno T, Okudela K, Otsuka A, Sasaki H, Tanabe C, Sakiyama T, Hirama C, Kitabayashi I, Minna JD, Takenoshita S, Yokota J (2005) Mutations and deletions of the CBP gene in human lung cancer. Clin Cancer Res 11: 512–519

    PubMed  CAS  Google Scholar 

  • Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M (2001) Activation of AMLl -mediated transcription by MOZ and inhibition by the MOZ-CBP hsion protein. EMBO J 20: 7184–7196

    PubMed  CAS  Google Scholar 

  • Klochendler-Yeivin A, Yaniv M (2001) Chromatin modifiers and tumor suppression. Biochim Biophys Acta 1551:MI-10

    Google Scholar 

  • Knudson AG, Jr. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68: 820–823

    PubMed  Google Scholar 

  • Kobet E, Zeng X, Zhu Y, Keller D, Lu H (2000) MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc Natl Acad Sci U S A 97: 12547–12552

    PubMed  CAS  Google Scholar 

  • Kojima K, Kaneda K, Yoshida C, Dansako H, Fujii N, Yano T, Shinagawa K, Yasukawa M, Fujita S, Tanimoto M (2003) A novel fusion variant of the MORF and CBP genes detected in therapy-related myelodysplastic syndrome with t(10; 16)(q22;p 13). Br J Haematol 120: 271–273

    PubMed  CAS  Google Scholar 

  • Koken MH, Saib A, de The H (1995) A C4HC3 zinc finger motif. C R Acad Sci III 318: 733–739

    PubMed  CAS  Google Scholar 

  • Korzus E, Torchia J, Rose DW, Xu L, Kurokawa R, McInerney EM, Mullen TM, Glass CK, Rosenfeld MG (1998) Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279: 703–707

    PubMed  CAS  Google Scholar 

  • Koshiishi N, Chong JM, Fukasawa T, Ikeno R, Hayashi Y, Funata N, Nagai H, Miyaki M, Matsumoto Y, Fukayama M (2004) p300 gene alterations in intestinal and diffuse types of gastric carcinoma. Gastric Cancer 7: 85–90

    PubMed  Google Scholar 

  • Kouzarides T (2002) Histone methylation in transcriptional control. Curr Opin Genet Dev 12: 198–209

    PubMed  CAS  Google Scholar 

  • Kraus WL, Manning ET, Kadonaga JT (1999) Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol Cell Biol 19: 8123–8135

    PubMed  CAS  Google Scholar 

  • Kundu TK, Palhan VB, Wang Z, An, W, Cole PA, Roeder RG (2000) Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol Cell 6: 551–561

    PubMed  CAS  Google Scholar 

  • Kung AL, Rebel VI, Bronson RT, Ch’ng LE, Sieff CA, Livingston DM, Yao TP (2000) Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 14: 272–277

    PubMed  CAS  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20: 615–626

    PubMed  CAS  Google Scholar 

  • Kurokawa R, Kalafus D, Ogliastro MH, Kioussi C, Xu L, Torchia J, Rosenfeld MG, Glass CK (1998) Differential use of CREB binding protein-coactivator complexes. Science 279: 700–703

    PubMed  CAS  Google Scholar 

  • Kwok RP, Lundblad JR, Chrivia,JC, Richards JP, Bachinger HP, Brennan RG, Roberts SG, Green MR, Goodman RH (1994) Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370: 223–226

    PubMed  CAS  Google Scholar 

  • Lavau C, Du C, Thirman M, Zeleznik-Le N (2000) Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J 19: 4655–4664

    PubMed  CAS  Google Scholar 

  • Lee JS, Zhang X, Shi Y (1996) Differential interactions of the CREBIATF family of transcription factors with p300 and adenovirus El A. J Biol Chem 271: 17666–17674

    PubMed  CAS  Google Scholar 

  • Leo C, Chen JD (2000) The SRC family of nuclear receptor coactivators. Gene 245: 1–11

    PubMed  CAS  Google Scholar 

  • Levy L, Hill CS (2006) Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17: 41–58

    PubMed  CAS  Google Scholar 

  • Liang J, Prouty L, Williams BJ, Dayton MA, Blanchard KL (1998) Acute mixed lineage leukemia with an inv(8)(pl lq13) resulting in fbsion of the genes for MOZ and TIF2. Blood 92: 2118–2122

    PubMed  CAS  Google Scholar 

  • Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM (1997) Binding and modulation of p53 by p300lCBP coactivators. Nature 387: 823–827

    PubMed  CAS  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL (1999) p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19: 1202–1209

    PubMed  CAS  Google Scholar 

  • Liu Z, Wong J, Tsai SY, Tsai MJ, O’Malley BW (2001) Sequential recruitment of steroid receptor coactivator-1 (SRC-1) and p300 enhances progesterone receptordependent initiation and reinitiation of transcription from chromatin. Proc Natl Acad Sci U S A 98: 12426–12431

    PubMed  CAS  Google Scholar 

  • Manning ET, Ikehara T, Ito T, Kadonaga JT, Kraus WL (2001) p300 forms a stable, template-committed complex with chromatin: role for the bromodomain. Mol Cell Biol 21: 3876–3887

    PubMed  CAS  Google Scholar 

  • Markham D, Munro S, Soloway J, OIConnor DP, La Thangue NB (2006) DNAdamage-responsive acetylation of pRb regulates binding to E2F-1. EMBO Rep 7: 192–198

    PubMed  CAS  Google Scholar 

  • Marmorstein R (2001) Protein modules that manipulate histone tails for chromatin regulation. Nat Rev Mol Cell Biol 2: 422–432

    PubMed  CAS  Google Scholar 

  • Marmorstein R, Roth SY (2001) Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 11: 155–161

    PubMed  CAS  Google Scholar 

  • Martens JH, Verlaan M, Kalkhoven E, Zantema A (2003) Cascade of distinct histone modifications during collagenase gene activation. Mol Cell Biol 23: 1808–1816

    PubMed  CAS  Google Scholar 

  • Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG (2001) Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-rnRNA splicing and DNA damagebinding factors in vivo. Mol Cell Biol 21: 6782–6795

    PubMed  CAS  Google Scholar 

  • Martinez-Balbas MA, Bannister AJ, Martin K, Haus-Seuffert P, Meisterernst M, Kouzarides T (1998) The acetyltransferase activity of CBP stimulates transcription. EMBO J 17: 2886–2893

    PubMed  CAS  Google Scholar 

  • Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T (2000) Regulation of E2F 1 activity by acetylation. EMBO J 19: 662–671

    PubMed  CAS  Google Scholar 

  • Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M (2000) E2F family members are differentially regulated by reversible acetylation. J Biol. Chem. 275: 10887–10892

    PubMed  CAS  Google Scholar 

  • Mathew S, Head D, Rubnitz JE, Raimondi SC (2000) Concurrent translocations of MLL and CBFA2 (AML1) genes with new partner breakpoints in a child with secondary myelodysplastic syndrome after treatment of acute lymphoblastic leukemia. Genes Chromosomes. Cancer 28: 227–232

    CAS  Google Scholar 

  • Miller RW, Rubinstein JH (1995) Tumors in Rubinstein-Taybi syndrome. Am J Med Genet 56: 112–115

    PubMed  CAS  Google Scholar 

  • Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, Hess JL (2002) MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10: 1107–1117

    PubMed  CAS  Google Scholar 

  • Mitsiou DJ, Stunnenberg HG (2003) p300 is involved in formation of the TBPTFIIA-containing basal transcription complex, TAC. EMBO J 22: 4501–4511

    PubMed  CAS  Google Scholar 

  • Munshi N, Merika M, Yie J, Senger K, Chen sG, Thanos D (1998) Acetylation of HMG I(Y) by CBP turns off IFN beta expression by disrupting the enhanceosome. Mol Cell 2: 457–467

    PubMed  CAS  Google Scholar 

  • Muraoka M, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Shitara N, Chong JM, Iwama T, Miyaki M (1996) p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12: 1565–1569

    PubMed  CAS  Google Scholar 

  • Murata T, Kurokawa R, Krones A, Tatsumi K, Ishii M, Taki T, Masuno M, Ohashi H, Yanagisawa M, Rosenfeld MG, Glass CK, Hayashi Y (2001) Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein-Taybi syndrome. Hum Mol Genet 10: 1071–1076

    PubMed  CAS  Google Scholar 

  • Murati A, Adelaide J, Mozziconacci MJ, Popovici C, Carbuccia N, Letessier A, Birg F, Birnbaum D, Chaffanet M (2004) Variant MYST4-CBP gene fusion in a t(10; 16) acute myeloid leukaemia. Br J Haematol 125: 601–604

    PubMed  CAS  Google Scholar 

  • Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD, Montminy M (1997a) RNA helicase A mediates association of CBP with RNA polymerase 11. Cell 90: 1107–1112.

    CAS  Google Scholar 

  • Nakajima T, Uchida C, Anderson SF, Parvin JD, Montminy M (1997b) Analysis of a CAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev 11: 738–747

    CAS  Google Scholar 

  • Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, Dubois G, Mazo A, Croce CM, Canaani E (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10: 1119–1128

    PubMed  CAS  Google Scholar 

  • Neish AS, Anderson SF, Schlegel BP, Wei W, Parvin JD (1998) Factors associated with the mammalian RNA polymerase II holoenzyrne. Nucleic Acids Res. 26: 847–853

    PubMed  CAS  Google Scholar 

  • Neuwald AF, Landsman D (1997) GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPTIO protein. Trends Biochem Sci 22: 154–155

    PubMed  CAS  Google Scholar 

  • Nguyen DX, Baglia LA, Huang SM, Baker CM, McCance DJ (2004) Acetylation regulates the differentiation-specific functions of the retinoblastoma protein. EMBO J 3: 1609–1618

    Google Scholar 

  • Ogryzko VV, Kotani T, Zhang X, Schlitz RL, Howard T, Yang XJ, Howard BH, Qin J, Nakatani Y (1998) Histone-like TAFs within the PCAF histone acetylase complex [see comments]. Cell 94: 35–44

    PubMed  CAS  Google Scholar 

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959

    PubMed  CAS  Google Scholar 

  • Ohshima T, Suganuma T, Ikeda M (2001) A novel mutation lacking the bromodomain of the transcriptional coactivator p300 in the SiHa cervical carcinoma cell line. Biochem Biophys Res Commun 281: 569–575

    PubMed  CAS  Google Scholar 

  • Oike Y, Hata A, Mamiya T, Kaname T, Noda Y, Suzuki M, Yasue H, Nabeshima T, Araki K, Yamamura K (1999) Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum Mol Genet 8: 387–396

    PubMed  CAS  Google Scholar 

  • Ozdag H, Batley SJ, Forsti A, Iyer NG, Daigo Y, Boutell J, Arends MJ, Ponder BA, Kouzarides T, Caldas C (2002) Mutation analysis of CBP and PCAF reveals rare inactivating mutations in cancer cell lines but not in primary tumours. Br J Cancer 87: 1162–1165

    PubMed  CAS  Google Scholar 

  • Panagopoulos I, Isaksson M, Lindvall C, Bjorkholm M, Ahlgren T, Fioretos T, Heim S, Mitelman F, Johansson B (2000) RT-PCR analysis of the MOZ-CBP and CBP-MOZ chimeric transcripts in acute myeloid leukemias with t(8; 16)(pll;p13). Genes Chromosomes. Cancer 28: 415–424

    CAS  Google Scholar 

  • Panagopoulos I, Fioretos T, Isaksson M, Samuelsson U, Billstrom R, Strombeck B, Mitelman F, Johansson B (2001) Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 10: 395–404

    PubMed  CAS  Google Scholar 

  • Panagopoulos I, Fioretos T, Isaksson M, Mitelman F, Johansson B, Theorin N, Juliusson G (2002) RT-PCR analysis of acute myeloid leukemia with t(8; 16)(p 1 1;p 13): identification of a novel MOZICBP transcript and absence of CBP/MOZ expression. Genes Chromosomes. Cancer 35: 372–374

    CAS  Google Scholar 

  • Panagopoulos I, Isaksson M, Lindvall C, Hagemeijer A, Mitelman F, Johansson B (2003) Genomic characterization of MOZICBP and CBP/MOZ chimeras in acute myeloid leukemia suggests the involvement of a damage-repair mechanism in the origin of the t(8; 16)(p11;p13). Genes Chromosomes. Cancer 36: 90–98

    CAS  Google Scholar 

  • Partanen A, Motoyama J, Hui CC (1999) Developmentally regulated expression of the transcriptional cofactors/histone acetyltransferases CBP and p300 during mouse embryogenesis. Int J Dev Biol 43: 487–494

    PubMed  CAS  Google Scholar 

  • Pelletier N, Champagne N, Stifani S, Yang XJ (2002) MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene 21: 2729–2740

    PubMed  CAS  Google Scholar 

  • Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ, Breuning MH (1995) Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376: 348–351

    PubMed  CAS  Google Scholar 

  • Petrij F, Dauwerse HG, Blough RI, Giles RH, van der Smagt JJ, Wallerstein R, Maaswinkel-Mooy PD, van Karnebeek CD, van Ommen GJ, van Haeringen A, Rubinstein JH, Saal HM, Hennekam RC, Peters DJ, Breuning MH (2000a) Diagnostic analysis of the Rubinstein-Taybi syndrome: five cosrnids should be used for microdeletion detection and low number of protein truncating mutations. J Med Genet 37: 168–176

    CAS  Google Scholar 

  • Petrij F, Dorsman JC, Dauwerse HG, Giles RH, Peeters T, Hennekam RC, Breuning MH, Peters DJ (2000b) Rubinstein-Taybi syndrome caused by a De Novo reciprocal translocation t(2;16)(q36.3;p13.3). Am J Med Genet 92: 47–52

    CAS  Google Scholar 

  • Ragvin A, Valvatne H, Erda1 S, Arskog V, Tufteland KR, Breen K, OYan AM, Eberharter A, Gibson TJ, Becker PB, Aasland R (2004) Nucleosome Binding by the Bromodomain and PHD Finger of the Transcriptional Cofactor p300. J Mol Biol 337: 773–788

    PubMed  CAS  Google Scholar 

  • Roelfsema JH, White SJ, Ariyurek Y, Bartholdi D, Niedrist D, Papadia F, Bacino CA, den Dunnen JT, van Ommen GJ, Breuning MH, Hennekam RC, Peters DJ (2005) Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am J Hum Genet 76: 572–580

    PubMed  CAS  Google Scholar 

  • Rouaux C, Loeffler JP, Boutillier AL (2004) Targeting CREB-binding protein (CBP) loss of function as a therapeutic strategy in neurological disorders. Biochem Pharmacol 68: 1157–1164

    PubMed  CAS  Google Scholar 

  • Rowan BG, Garrison N, Weigel NL, OIMalley BW (2000) 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol. Cell Biol. 20: 8720–8730

    PubMed  CAS  Google Scholar 

  • Rowley JD, Reshmi S, Sobulo O, Musvee T, Anastasi J, Raimondi S, Schneider NR, Barredo JC, Cantu ES, Schlegelberger B, Behm F, Doggett NA, Borrow,J, Zeleznik-Le N (1997) All patients with the T(11; 16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood 90: 535–541

    PubMed  CAS  Google Scholar 

  • Rozman M, Camos M, Colomer D, Villamor N, Esteve J, Costa D, Carrio A, Aymerich M, Aguilar JL, Domingo A, Sole F, Gomis F, Florensa L, Montserrat E, Campo E (2004) Type I MOZICBP (MYST3lCREBBP) is the most common chimeric transcript in acute myeloid leukemia with t(8; 16)(p11;p13) translocation. Genes Chromosomes. Cancer 40: 140–145

    CAS  Google Scholar 

  • Rubinstein JH, Taybi H (1963) Broad thumbs and toes and facial abnormalities. Am J Dis Child 105: 588–608

    PubMed  CAS  Google Scholar 

  • Russell M, Berardi P, Gong W, Riabowo1 K (2006) Grow-ING, Age-ING and Die-ING: ING proteins link cancer, senescence and apoptosis. Exp Cell Res 312: 951–961

    PubMed  CAS  Google Scholar 

  • Saha RN, Pahan K (2006) HATS and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13: 539–550

    PubMed  CAS  Google Scholar 

  • Saha V, Chaplin T, Gregorini A, Ayton P, Young BD (1995) The leukemiaassociated-protein (LAP) domain, a cysteine-rich motif, is present in a wide range of proteins, including MLL, AFIO, and MLLT6 proteins. Proc Natl Acad Sci U S A 92: 9737–9741

    PubMed  CAS  Google Scholar 

  • Satake N, Ishida Y, Otoh Y, Hinohara S, Kobayashi H, Sakashita A, Maseki N, Kaneko Y (1997) Novel MLL-CBP fusion transcript in therapy-related chronic myelomonocytic leukemia with at(l1; 16)(q23;p13) chromosome translocation. Genes Chromosomes. Cancer 20: 60–63

    CAS  Google Scholar 

  • Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y (1999) Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem 274: 1189–1192

    PubMed  CAS  Google Scholar 

  • Schmidt HH, Strehl S, Thaler D, Strunk D, Sill H, Linkesch W, Jager U, Sperr W, Greinix HT, Konig M, Emberger W, Haas O A (2004) RT-PCR and FISH analysis of acute myeloid leukemia with t(8; 16)(p 1 1;p 13) and chimeric MOZ and CBP transcripts: breakpoint cluster region and clinical implications. Leukemia 18: 1115–1121

    PubMed  CAS  Google Scholar 

  • Scolnick DM, Chehab NH, Stavridi ES, Lien MC, Caruso L, Moran E, Berger SL, Halazonetis TD 1997 CREB-binding protein and p300lCBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein. Cancer Res. 57: 3693–3696

    PubMed  CAS  Google Scholar 

  • Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M (2000) Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103: 843–852

    PubMed  CAS  Google Scholar 

  • Shigeno K, Yoshida H, Pan L, Luo JM, Fujisawa S, Naito K, Nakamura S, Shinjo K, Takeshita A, Ohno R, Ohnishi K (2004) Disease-related potential of mutations in transcriptional cofactors CREB-binding protein and p300 in leukemias. Cancer Lett. 213: 11–20

    PubMed  CAS  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci U S A 100: 13225–13230

    PubMed  CAS  Google Scholar 

  • Shikama N, Lyon J, La Thangue NB (2000) The p300lCBP family: Integrating signals with transcription factors and chromatin. Trends Cell Biol 7: 230–236

    Google Scholar 

  • Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, Onogi H, Higashimoto Y, Appella E, Yokota J, Harris CC (2003) p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res 63: 2373–2378

    PubMed  CAS  Google Scholar 

  • So CK, Nie Y, Song Y, Yang GY, Chen S, Wei C, Wang LD, Doggett NA, Yang CS (2004) Loss of heterozygosity and internal tandem duplication mutations of the CBP gene are frequent events in human esophageal squamous cell carcinoma. Clin Cancer Res 10: 19–27

    PubMed  CAS  Google Scholar 

  • Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B, Housman D, Doggett NA, Rowley JD, Zeleznik L (1997) MLL is hsed to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(l1;16)(q23;p13.3). Proc Natl Acad Sci U S A 94: 8732–8737

    PubMed  CAS  Google Scholar 

  • Soutoglou E, Talianidis I (2002) Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation. Science 295: 1901–1904

    PubMed  CAS  Google Scholar 

  • Soutoglou E, Katrakili N, Talianidis I (2000) Acetylation regulates transcription factor activity at multiple levels. Mol Cell 5: 745–751

    PubMed  CAS  Google Scholar 

  • Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194–198

    PubMed  CAS  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64: 435–459

    PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41–45

    PubMed  CAS  Google Scholar 

  • Suganuma T, Kawabata M, Ohshima T, Ikeda MA (2002) Growth suppression of human carcinoma cells by reintroduction of the p300 coactivator. Proc Natl Acad Sci U S A 99: 13073–13078

    PubMed  CAS  Google Scholar 

  • Sun Y, Ko1ligs FT, Hottiger MO, Mosavin R, Fearon ER, Nabel GJ (2000) Regulation of beta-catenin transformation by the p300 transcriptional coactivator. Proc Natl Acad Sci U S A 97: 12613–12618

    PubMed  CAS  Google Scholar 

  • Taki T, Sako M, Tsuchida M, Hayashi Y (1997) The t(11; 16)(q23;p13) translocation in myelodysplastic syndrome fhses the MLL gene to the CBP gene. Blood 89: 3945–3950

    PubMed  CAS  Google Scholar 

  • Tan S (2001) One HAT size fits all? Nat Struct Biol 8: 8–10

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Naruse I, Maekawa T, Masuya H, Shiroishi T, Ishii S (1997) Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc Natl Acad Sci U S A 94: 10215–10220

    PubMed  CAS  Google Scholar 

  • Tillinghast GW, Partee J, Albert P, Kelley JM, Burtow KH, Kelly K (2003) Analysis of genetic stability at the EP300 and CREBBP loci in a panel of cancer cell lines. Genes Chromosomes. Cancer 37: 121–131

    CAS  Google Scholar 

  • Timmermann S, Lehrrnann H, Polesskaya A, Harel-Bellan A (2001) Histone acetylation and disease. Cell Mol Life Sci 58: 728–736

    PubMed  CAS  Google Scholar 

  • Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22: 836–845

    PubMed  CAS  Google Scholar 

  • Villavicencio EH, Walterhouse DO, Iannaccone PM (2000) The sonic hedgehogpatched-gli pathway in human development and disease. Am J Hum Genet 67: 1047–1054

    PubMed  CAS  Google Scholar 

  • Vizmanos, JL., Larrayoz MJ, Lahortiga I, Floristan F, Alvarez C, Odero MD, Novo FJ, Calasanz MJ (2003) t(10; 16)(q22;p13) and MORF-CREBBP fusion is a recurrent event in acute myeloid leukemia. Genes Chromosomes. Cancer 36: 402–405

    CAS  Google Scholar 

  • Vo N, Goodman RH (2001) CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276: 13505–13508

    PubMed  CAS  Google Scholar 

  • Voegel JJ, Heine MJ, Tini M, Vivat V, Chambon P, Gronemeyer H (1998) The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J 17: 507–519

    PubMed  CAS  Google Scholar 

  • Wang J, Iwasaki H, Krivtsov A, Febbo PG, Thorner AR, Ernst P, Anastasiadou E, Kutok JL, Kogan SC, Zinkel SS., Fisher, JK, Hess, JL, Golub TR, Armstrong SA, Akashi K, Korsmeyer SJ (2005) Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J 24: 368–381

    PubMed  Google Scholar 

  • Ward R, Johnson M, Shridhar V, van Deursen J, Couch FJ (2005) CBP truncating mutations in ovarian cancer. J Med Genet 42: 514–518

    PubMed  CAS  Google Scholar 

  • Winston F, Allis CD (1999) The bromodomain: a chromatin-targeting module? Nat Struct Biol 6: 601–604

    PubMed  CAS  Google Scholar 

  • Wu RC, Qin J, Yi P, Wong J, Tsai SY, Tsai M J, O’Malley BW (2004) Selective phosphorylations of the SRC-3lAIB 1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol Cell 15: 937–949

    PubMed  CAS  Google Scholar 

  • Xu W, Edmondson DG, Roth SY (1998) Mammalian GCN5 and PICAF acetyltransferases have homo-logous amino-terminal domains important for recognition of nucleosomal substrates. Mol Cell Biol 18: 5659–5669

    PubMed  CAS  Google Scholar 

  • Xu W, Chen H, Du K, Asahara H, Tini M, Emerson BM, Montrniny M, Evans RM (2001) A transcriptional switch mediated by cofactor methylation. Science 294: 2507–2511

    PubMed  CAS  Google Scholar 

  • Yamauchi T, Oike Y, Kamon J, Waki H, Komeda K, Tsuchida A, Date Y, Li MX, Miki H, Akanuma Y, Nagai R, Kimura S, Saheki T, Nakazato M, Naitoh T, Yamamura K, Kadowaki T (2002) Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice. Nat Genet30: 221–226

    PubMed  CAS  Google Scholar 

  • Yan Y, Barlev NA, Haley RH, Berger SL, Marmorstein R (2000) Crystal structure of yeast esal suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol. Cell 6: 1195–1205

    PubMed  CAS  Google Scholar 

  • Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32: 959–976

    PubMed  CAS  Google Scholar 

  • Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein El A. Nature 382: 319–324

    PubMed  CAS  Google Scholar 

  • Yao TP, Oh SP, Fuchs M, Zhou ND, Ch’ng LE, Newsome D, Bronson RT, Li E, Livingston DM, Eckner R (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93: 361–372

    PubMed  CAS  Google Scholar 

  • Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T (1997) Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 11: 1605–1609

    PubMed  CAS  Google Scholar 

  • Yuan LW, Giordano A (2002) Acetyltransferase machinery conserved in p300lCBP-family proteins. Oncogene 21: 2253–2260

    PubMed  CAS  Google Scholar 

  • Yuan W, Condorelli G, Caruso M, Felsani A, Giordano A (1996) Human p300 protein is a coactivator for the transcription factor MyoD. J Biol Chem 271: 9009–9013

    PubMed  CAS  Google Scholar 

  • Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23: 217–247

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Beekum, O.V., Kalkhoven, E. (2007). Aberrant Forms of Histone Acetyltransferases in Human Disease. In: Kundu, T.K., et al. Chromatin and Disease. Subcellular Biochemistry, vol 41. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5466-1_11

Download citation

Publish with us

Policies and ethics