Skip to main content

Aspartases: Molecular Structure, Biochemical Function and Biotechnological Applications

  • Chapter
Book cover Industrial Enzymes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acuna, G., Ebeling, S. and Hennecke, H. (1991). Cloning, sequencing, and mutational analysis of the Bradyrhizobium japonicum fumC-like gene: evidence for the existence of two different fumarases. J Gen Microbiol 137, 991–1000.

    PubMed  CAS  Google Scholar 

  • Beeckmans, S. and Van Driessche, E. (1998). Pig heart fumarase contains two distinct substrate binding sites differing in affinity. J Biol Chem 273, 31661–31669.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard, J.S. and Cleland, W.W. (1980). Use of isotope effects to deduce the chemical mechanism of fumarase. Biochemistry 19, 4506–4513.

    Article  PubMed  CAS  Google Scholar 

  • Burland, V., Plunkett, G., 3rd, Sofia, H.J., Daniels, D.L. and Blattner, F.R. (1995). Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res 23, 2105–2119.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H.H., Chen, J.T. and Tsai, H. (1996). Site-directed mutagenesis of cysteinyl residues in aspartase of Escherichia coli. Ann N Y Acad Sci 799, 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Cook, R.P. and Woolf, B. (1928). The deamination and synthesis of L-aspartic acid in the presence of bacteria. Biochem J 22, 474–481.

    PubMed  CAS  Google Scholar 

  • Ellfolk, N. (1953a). Studies on aspartase. I. Quantitative separation of aspartase from bacterial cells, and its partial purification. Acta Chem Scand 7, 824–830.

    Article  CAS  Google Scholar 

  • Ellfolk, N. (1953b). Studies on aspartase. II. On the chemical nature of aspartase. Acta Chem Scand 7, 1155–1163.

    Article  CAS  Google Scholar 

  • Ellfolk, N. (1954). Studies on aspartase. III. On the specificity of aspartase. Acta Chem Scand 8, 151–156.

    Article  CAS  Google Scholar 

  • Falzone, C.J., Karsten, W.E., Conley, J.D. and Viola, R.E. (1988). L-aspartase from Escherichia coli: substrate specificity and role of divalent metal ions. Biochemistry 27, 9089–9093.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, T., Sakai, H., Kawata, Y. and Hata, Y. (2003). Crystal structure of thermostable aspartase from Bacillus sp. YM55-1: structure-based exploration of functional sites in the aspartase family. J Mol Biol 328, 635–654.

    Article  PubMed  CAS  Google Scholar 

  • Fusee, M.C., Swann, W.E. and Calton, G.J. (1981). Immobilization of Escherichia coli Cells Containing Aspartase Activity with Polyurethane and Its Application for l-Aspartic Acid Production. Appl Environ Microbiol 42, 672–676.

    PubMed  CAS  Google Scholar 

  • Guest, J.R., Roberts, R.E. and Wilde, R.J. (1984). Cloning of the aspartase gene (aspA) of Escherichia coli. J Gen Microbiol 130, 1271–1278.

    PubMed  CAS  Google Scholar 

  • Ida, N. and Tokushige, M. (1984). Chemical modification of essential histidine residues in aspartase with diethylpyrocarbonate. J Biochem (Tokyo) 96, 1315–1321.

    CAS  Google Scholar 

  • Ida, N. and Tokushige, M. (1985). Assignment of catalytically essential cysteine residues in aspartase by selective chemical modification with N-(7-dimethylamino-4-methylcoumarynyl) maleimide. J Biochem (Tokyo) 98, 793–797.

    CAS  Google Scholar 

  • Ida, N. and Tokushige, M. (1985). L-Aspartate-induced activation of aspartase. J Biochem (Tokyo) 98, 35–39.

    CAS  Google Scholar 

  • Jayasekera, M.M., Saribas, A.S. and Viola, R.E. (1997). Enhancement of catalytic activity by gene truncation: activation of L-aspartase from Escherichia coli. Biochem Biophys Res Commun 238, 411–414.

    Article  PubMed  CAS  Google Scholar 

  • Jayasekera, M.M., Shi, W., Farber, G.K. and Viola, R.E. (1997). Evaluation of functionally important amino acids in L-aspartate ammonia-lyase from Escherichia coli. Biochemistry 36, 9145–9150.

    Article  PubMed  CAS  Google Scholar 

  • Jayasekera, M.M. and Viola, R.E. (1999). Recovery of catalytic activity from an inactive aggregated mutant of L-aspartase. Biochem Biophys Res Commun 264, 596–600.

    Article  PubMed  CAS  Google Scholar 

  • Karsten, W.E., Gates, R.B. and Viola, R.E. (1986). Kinetic studies of L-aspartase from Escherichia coli: substrate activation. Biochemistry 25, 1299–1303.

    Article  PubMed  CAS  Google Scholar 

  • Karsten, W.E., Hunsley, J.R. and Viola, R.E. (1985). Purification of aspartase and aspartokinase-homoserine dehydrogenase I from Escherichia coli by dye-ligand chromatography. Anal Biochem 147, 336–341.

    Article  PubMed  CAS  Google Scholar 

  • Karsten, W.E. and Viola, R.E. (1991). Kinetic studies of L-aspartase from Escherichia coli: pH-dependent activity changes. Arch Biochem Biophys 287, 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Katoh, K., Kuma, K., Toh, H. and Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33, 511–518.

    Article  PubMed  CAS  Google Scholar 

  • Kawata, Y., Tamura, K., Kawamura, M., Ikei, K., Mizobata, T., Nagai, J., Fujita, M., Yano, S., Tokushige, M. and Yumoto, N. (2000). Cloning and over-expression of thermostable Bacillus sp. YM55-1 aspartase and site-directed mutagenesis for probing a catalytic residue. Eur J Biochem 267, 1847–1857.

    Article  PubMed  CAS  Google Scholar 

  • Kawata, Y., Tamura, K., Yano, S., Mizobata, T., Nagai, J., Esaki, N., Soda, K., Tokushige, M. and Yumoto, N. (1999). Purification and characterization of thermostable aspartase from Bacillus sp. YM55-1. Arch Biochem Biophys 366, 40–46.

    Article  PubMed  CAS  Google Scholar 

  • Kazuoka, T., Masuda, Y., Oikawa, T. and Soda, K. (2003). Thermostable aspartase from a marine psychrophile, Cytophaga sp. KUC-1: molecular characterization and primary structure. J Biochem (Tokyo) 133, 51–58.

    CAS  Google Scholar 

  • Kong, X., Li, Z., Gou, X., Zhu, S., Zhang, H., Wang, X. and Zhang, J. (2002). A monomeric L-aspartase obtained by in vitro selection. J Biol Chem 277, 24289–24293.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T.T., Worby, C., Bao, Z.Q., Dixon, J.E. and Colman, R.F. (1999). His68 and His141 are critical contributors to the intersubunit catalytic site of adenylosuccinate lyase of Bacillus subtilis. Biochemistry 38, 22–32.

    Article  PubMed  CAS  Google Scholar 

  • Mizuta, K. and Tokushige, M. (1975). Studies on aspartase. II. Role of sulfhydryl groups in aspartase from Escherichia coli. Biochim Biophys Acta 403, 221–231.

    PubMed  CAS  Google Scholar 

  • Murase, S., Kawata, Y. and Yumoto, N. (1993). Identification of an active dimeric form of aspartase as a denaturation intermediate. J Biochem (Tokyo) 114, 393–397.

    CAS  Google Scholar 

  • Nuiry, II, Hermes, J.D., Weiss, P.M., Chen, C.Y. and Cook, P.F. (1984). Kinetic mechanism and location of rate-determining steps for aspartase from Hafnia alvei. Biochemistry 23, 5168–5175.

    Article  PubMed  CAS  Google Scholar 

  • Porter, D.J. and Bright, H.J. (1980). 3-Carbanionic substrate analogues bind very tightly to fumarase and aspartase. J Biol Chem 255, 4772–4780.

    PubMed  CAS  Google Scholar 

  • Quastel, J.H. and Woolf, B. (1926). The equilibrium between L-aspartic acid, fumaric acid and ammonia in the presence of resting bacteria. Biochem J 20, 545–555.

    PubMed  CAS  Google Scholar 

  • Rose, I.A. and Weaver, T.M. (2004). The role of the allosteric B site in the fumarase reaction. Proc Natl Acad Sci U S A 101, 3393–3397.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Rudolph, F.B. and Fromm, H.J. (1971). The purification and properties of aspartase from Escherichia coli. Arch Biochem Biophys 147, 92–98.

    Article  PubMed  CAS  Google Scholar 

  • Saribas, A.S., Schindler, J.F. and Viola, R.E. (1994). Mutagenic investigation of conserved functional amino acids in Escherichia coli L-aspartase. J Biol Chem 269, 6313–6319.

    PubMed  CAS  Google Scholar 

  • Sato, T. and Tosa, T. (1993). Production of L-aspartic acid. Bioprocess Technol 16, 15–24.

    PubMed  CAS  Google Scholar 

  • Schindler, J.F. and Viola, R.E. (1994). Mechanism-based inactivation of L-aspartase from Escherichia coli. Biochemistry 33, 9365–9370.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, Y., Li, S., Gou, X., Kong, X., Wang, X., Sun, Y. and Zhang, J. (2005). The hybrid enzymes from alpha-aspartyl dipeptidase and L-aspartase. Biochem Biophys Res Commun 331, 107–112.

    Article  PubMed  CAS  Google Scholar 

  • Shi, W., Dunbar, J., Jayasekera, M.M., Viola, R.E. and Farber, G.K. (1997). The structure of L-aspartate ammonia-lyase from Escherichia coli. Biochemistry 36, 9136–9144.

    Article  PubMed  CAS  Google Scholar 

  • Sun, D.X. and Setlow, P. (1991). Cloning, nucleotide sequence, and expression of the Bacillus subtilis ans operon, which codes for L-asparaginase and L-aspartase. J Bacteriol 173, 3831–3845.

    PubMed  CAS  Google Scholar 

  • Takagi, J.S., Ida, N., Tokushige, M., Sakamoto, H. and Shimura, Y. (1985). Cloning and nucleotide sequence of the aspartase gene of Escherichia coli W. Nucleic Acids Res 13, 2063–2074.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, J.S., Tokushige, M. and Shimura, Y. (1986). Cloning and nucleotide sequence of the aspartase gene of Pseudomonas fluorescens. J Biochem (Tokyo) 100, 697–705.

    CAS  Google Scholar 

  • Tosa, T., Sato, T., Mori, T., Matuo, Y. and Chibata, I. (1973). Continuous production of L-aspartic acid by immobilized aspartase. Biotechnol Bioeng 15, 69–84.

    Article  CAS  Google Scholar 

  • Viola, R.E. (2000). L-aspartase: new tricks from an old enzyme. Adv Enzymol Relat Areas Mol Biol 74, 295–341.

    Article  PubMed  CAS  Google Scholar 

  • Virtanen, A.I. and Tarnanen, J. (1932). Die Enzymatische Spaltung und Synthese der Asparaginsaure. Biochem Z 250, 193–211.

    CAS  Google Scholar 

  • Wang, L.J., Kong, X.D., Zhang, H.Y., Wang, X.P. and Zhang, J. (2000). Enhancement of the activity of L-aspartase from Escherichia coli W by directed evolution. Biochem Biophys Res Commun 276, 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, T. and Banaszak, L. (1996). Crystallographic studies of the catalytic and a second site in fumarase C from Escherichia coli. Biochemistry 35, 13955–13965.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, T., Lees, M. and Banaszak, L. (1997). Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site. Protein Sci 6, 834–842.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, T.M., Levitt, D.G., Donnelly, M.I., Stevens, P.P. and Banaszak, L.J. (1995). The multisubunit active site of fumarase C from Escherichia coli. Nat Struct Biol 2, 654–662.

    Article  PubMed  CAS  Google Scholar 

  • Woods, S.A., Miles, J.S. and Guest, J.R. (1988). Sequence homologies between argininosuccinase, aspartase, and fumarase: a family of structurally-related enzymes. FEMS Microbiol Lett 51, 181–186.

    Article  CAS  Google Scholar 

  • Wu, C.Y., Lee, H.J., Wu, S.H., Chen, S.T., Chiou, S.H. and Chang, G.G. (1998). Chemical mechanism of the endogenous argininosuccinate lyase activity of duck lens delta2-crystallin. Biochem J 333(Pt 2), 327–334.

    PubMed  CAS  Google Scholar 

  • Yoon, M.Y., Thayer-Cook, K.A., Berdis, A.J., Karsten, W.E., Schnackerz, K.D. and Cook, P.F. (1995). Acid/base chemical mechanism of aspartase from Hafnia alvei. Arch Biochem Biophys 320, 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Yumoto, N., Mizuta, K., Tokushige, M. and Hayashi, R. (1982). Studies on aspartase VIII. Protease-mediated activation: comparative survey of protease specificity for activation and peptide cleavage. Physiol Chem Phys 14, 391–397.

    PubMed  CAS  Google Scholar 

  • Yumoto, N., Okada, M. and Tokushige, M. (1982). Biospecific inactivation of aspartase by L-aspartic-beta-semialdehyde. Biochem Biophys Res Commun 104, 859–866.

    Article  PubMed  CAS  Google Scholar 

  • Yumoto, N., Tokushige, M. and Hayashi, R. (1980). Studies on aspartase. VI. Trypsin-mediated activation releasing carboxy-terminal peptides. Biochim Biophys Acta 616, 319–328.

    PubMed  CAS  Google Scholar 

  • Zhang, H.Y., Zhang, J., Lin, L., Du, W.Y. and Lu, J. (1993). Enhancement of the stability and activity of aspartase by random and site-directed mutagenesis. Biochem Biophys Res Commun 192, 15–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Mizobata, T., Kawata, Y. (2007). Aspartases: Molecular Structure, Biochemical Function and Biotechnological Applications. In: Polaina, J., MacCabe, A.P. (eds) Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_31

Download citation

Publish with us

Policies and ethics