Skip to main content

Prokaryotic Reverse Transcriptases

  • Chapter
Industrial Enzymes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belfort, M. and Roberts, R.J. (1997). Homing endonucleases: keeping the house in order. Nucleic Acid Res. 25, 3379–3388.

    Article  PubMed  CAS  Google Scholar 

  • Blocker, F.J.H., Mohr, G., Conlan, L.H., Qi, L., Belfort, M. and Lambowitz, A.M. (2005). Domain structure and three-dimensional model of a group II intron-encoded reverse transcriptase. RNA 11, 14–28.

    Article  PubMed  CAS  Google Scholar 

  • Chee, G.-J. and Takami, H. (2005). Housekeeping recA gene interrupted by group II intron in the thermophilic Geobacillus kaustophilus. Gene (in press).

    Google Scholar 

  • Cousineau, B., Smith, D., Lawrence-Cavanagh, S., Mueller, J.E., Yang J., Mills D., Nanias, D.A., Dunny, G.M., Lambowitz, A.M. and Belfort, M. (1998). Retrohoming of a bacterial group II intron, mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94, 451–462.

    Article  PubMed  CAS  Google Scholar 

  • Cousineau, B., Lawrence, S., Smith, D. and Belfort, M. (2000). Retrotransposition of a bacterial group II intron. Nature 404, 1018–1021.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Dai, L. and Zimmerly, S. (2003). Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior. Nucleic Acid Res. 30, 1091–1102.

    Article  Google Scholar 

  • Dhundale, A., Lampson, B., Furuichi, T., Inouye, M. and Inouye, S. (1987). Structure of msDNA from Myxococcus xanthus: evidence for a long self-annealing RNA precursor for the covalently linked, branched RNA. Cell 51, 1105–1112.

    Article  PubMed  CAS  Google Scholar 

  • Doulatov, S., Hodes, A., Dai, L., Mandhana, N., Liu, M., Deora, R., Simons, R.W., Zimmerly, S. and Miller, J.F. (2004). Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431, 476–480.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Eickbush, T.H. (1994). Origin and evolutionary relationships of retroelements. In The evolutionalry biology of viruses, S.S. Morse, ed. New York, NY: Raven Press. pp. 127–157.

    Google Scholar 

  • Eickbush, T.H. and Malik, H.S. (2002). Origins and evolution of retrotransposons. In Mobile DNA II, N.L. Craig et al., eds. Washington, DC: ASM Press. pp. 1111–1144.

    Google Scholar 

  • Ferat, J.L. and Michel, F. (1993). Group II self-splicing introns in bacteria. Nature 364, 358–361.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Frazier, C.L., San Filippo, J., Lambowitz, A. M and Mills, D.A. (2003). Genetic manipulation of Lactococcus lactis by using targeted group II introns: generation of stable insertions without selection. Appl. Environ. Microbiol. 69, 1121–1128.

    Article  PubMed  CAS  Google Scholar 

  • Fu, G.K. and Stuve, L.L. (2003). Improved method for the construction of full-length enriched cDNA libraries. BioTechniques 34, 954–957.

    PubMed  CAS  Google Scholar 

  • Furuichi, T., Dhundale, A., Inouye, M. and Inouye, S. (1987). Branched RNA covalently linked to the 5″ end of a single-stranded DNA in Stigmatella aurantiaca: structure of msDNA. Cell 48, 47–53.

    Article  PubMed  CAS  Google Scholar 

  • Guo, H., Karberg, M., Long, M., Jones, J.P., Sullenger, B. and Lambowitz, A.M. (2000). Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289, 452–457.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Guo, H., Zimmerly, S., Perlman, P.S. and Lambowitz, A.M. (1997). Group II intron endonucleases use both RNA and protein subunits for recognition of specific sequences in double-stranded DNA. EMBO J. 16, 6835–6848.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, G.P., Mayo, M.S., Hunter, E. and Lever, A.M.L. (1998). Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5″ and 3″ of the catalytic site. Nucleic Acid Res. 26, 3433–3442.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, P.R., Jin, P. and Fu, G.K. (2003). Full-length cDNA synthesis for long-distance RT-PCR of large mRNA transcripts. BioTechniques 34, 768–773.

    PubMed  CAS  Google Scholar 

  • Herzer, P.J., Inouye, S., Inouye, M. and Whittam, T.S. (1990). Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J. Bacteriol. 172, 6175–6181.

    PubMed  CAS  Google Scholar 

  • Herzer, P.J., Inouye, S. and Inouye, M. (1992). Retron-Ec107 is inserted into the Escherichia coli genome by replacing a palindromic 34 bp intergenic sequence. Mol. Microbiol. 6, 345–354.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, M-Y., Inouye, S. and Inouye, M. (1989). Structural requirements of the RNA precursor for the biosynthesis of the branched RNA-linked msDNA of Myxococcus xanthus. J. Biol. Chem. 264, 6214–6219.

    PubMed  CAS  Google Scholar 

  • Ichiyanagi, K., Beauregard, A., Lawrence, S., Smith, D., Cousineau, B. and Belfort, M. (2002). Retrotransposition of the Ll.LtrB group II intron proceeds predominantly via reverse splicing into DNA targets. Mol. Microbiol. 46, 1259–1272.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, M., Ke, H., Yashio, A., Yamanaka, K., Nariya, H., Shimamoto, T. and Inouye, S. (2004). Complex formation between a putative 66-residue thumb domain of bacterial reverse transcriptase RT-Ec86 and the primer recognition RNA. J. Biol. Chem. 279, 50735–50742.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, S., Hsu, M-Y., Eagle, S. and Inouye, M. (1989). Reverse transcriptase associated with the biosynthesis of the branched RNA-linked msDNA in Myxococcus xanthus. Cell 56, 709–717.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, S., Hsu, M-Y., Xu, A. and Inouye, M. (1999). Highly specific recognition of primer RNA structures for 2′-OH priming reaction by bacterial reverse transcriptases. J. Biol. Chem. 274, 31236–31244.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian, H.H. (2004). Mobile elements: drivers of genome evolution. Science 303, 1626–1632.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kim, K., Jeong, D. and Lim, D. (1997). A mutational study of the site-specific cleavage of Ec83, a multicopy single-stranded DNA (msDNA): nucleotides at the msDNA stem are important for its cleavage. J. Bacteriol. 179, 6518–6521.

    PubMed  CAS  Google Scholar 

  • Kotewicz, M.L., Sampson, C.M., D’Alessio, J.M. and Gerard, G. F. (1988). Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H. Nucleic Acid Res. 16, 265–277.

    Article  PubMed  CAS  Google Scholar 

  • Lambowitz, A.M. and Zimmerly, S. (2004). Mobile group II introns. Annu. Rev. Genet. 38, 1–35.

    Article  PubMed  CAS  Google Scholar 

  • Lampson, B.C., Inouye, M. and Inouye, S. (1989a). Reverse transcriptase with concomitant ribonuclease H activity in the cell-free synthesis of branched RNA-linked msDNA of Myxococcus xanthus. Cell 56, 701–707.

    Article  CAS  Google Scholar 

  • Lampson, B.C., Inouye, M. and Inouye, S. (2001). The msDNAs of bacteria. Prog. Nucleic Acid Res. Mol. Biol. 67, 65–91.

    CAS  Google Scholar 

  • Lampson, B.C., Inouye, M. and Inouye, S. (2005). Retrons, msDNA, and the bacterial genome. Cytogenet. Genome Res. 110, 491–499.

    Article  PubMed  CAS  Google Scholar 

  • Lampson, B.C. and Rice, S.A. (1997). Repetitive sequences found in the chromosome of the myxobacterium Nannocystis exedens are similar to msDNA: a possible retro-transposition event in bacteria. Mol. Microbiol. 23, 813–823.

    Article  PubMed  CAS  Google Scholar 

  • Lampson, B.C., Sun, J., Hsu, M-Y., Vallejo-Ramirez, J., Inouye, S. and Inouye, M. (1989b). Reverse transcriptase in a clinical strain of E. coli: its requirements for production of branched RNA-linked msDNA. Science 243, 1033–1038.

    Article  ADS  CAS  Google Scholar 

  • Lampson, B.C., Xu, C., Rice, S.A. and Inouye, S. (2002). A partial copy of msDNA from a new retron element is likely a retro-transposed DNA found in the myxobacterium Nannocystis exedens. Gene 299, 251–261.

    Article  PubMed  CAS  Google Scholar 

  • Lampson, B.C., Viswanathan, M., Inouye, M. and Inouye, S. (1990). Reverse transcriptase from Escherichia coli exists as a complex with msDNA and is able to synthesize double-stranded DNA. J. Biol. Chem. 265, 8490–8496.

    PubMed  CAS  Google Scholar 

  • Lim, D. (1992). Structure and biosynthesis of unbranched multicopy single-stranded DNA by reverse transcriptase in a clinical Escherichia coli isolate. Mol. Microbiol. 6, 3531–3542.

    Article  PubMed  CAS  Google Scholar 

  • Lim, D. and Maas, W.K. (1989). Reverse transcriptase-dependent synthesis of a covalently linked, branched DNA-RNA compound in E. coli B. Cell 56, 891–904.

    Article  PubMed  CAS  Google Scholar 

  • Lima, T.M.O. and Lim, D. (1995). Isolation and characterization of host mutants defective in msDNA synthesis: role of ribonuclease H in msDNA synthesis. Plasmid 33, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M., Deora, R., Doulatov, S.R., Gingery, M., Eiserling, F. A., Preston, A., Maskell, D.J., Simons, R.W., Cotter, P.A., Parkhill, J. and Miller, J.F. (2002). Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295, 2091–2094.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Liu, M., Gingery, M., Doulatov, S.R., Liu, Y., Hodes, A., Baker, S., Davis, P., Simmonds, M., Churcher, C., Mungall, K., Quail, M. A., Preston, A., Harvill, E.T., Maskell, D.J., Eiserling, F.A., Parkhill, J. and Miller, J.F. (2004). Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism-switching cassettes. J. Bacteriol. 186, 1503–1517.

    Article  PubMed  CAS  Google Scholar 

  • Lue, N.F. (2004). Adding to the ends: what makes telomerase processive and how important is it? Bioessays 26, 955–962.

    Article  PubMed  CAS  Google Scholar 

  • Maas, W.K., Wang, C., Lima, T., Zubay, G. and Lim, D. (1994). Multicopy single-stranded DNAs with mismatched base pairs are mutagenic in Escherichia coli. Mol. Microbiol. 14, 437–441.

    Article  PubMed  CAS  Google Scholar 

  • Maas, W.K., Wang, C., Lima, T., Hach, A. and Lim, D. (1996). Multicopy single-stranded DNA of Escherichia coli enhances mutation and recombination frequencies by titrating MutS protein. Mol. Microbiol. 19, 505–509.

    Article  PubMed  CAS  Google Scholar 

  • Mao, J.-R., Shimada, M., Inouye, S. and Inouye, M. (1995). Gene regulation by antisense DNA produced in vivo. J. Biol. Chem. 270, 19684–19687.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Abarca, F., Garcia-Rodriguez, F.M. and Toro, N. (2000). Homing of a bacterial group II intron with an intron-encoded protein lacking a recognizable endonuclease domain. Mol. Microbiol. 35, 1405–1412.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Abarca, F. and Toro, N. (2000). Group II introns in the bacterial world. Mol. Microbiol. 38, 917–926.

    Article  PubMed  CAS  Google Scholar 

  • Matsurra, M., Noah, J.W. and Lambowitz, A.M. (2001). Mechanism of maturase-promoted group II intron splicing. EMBO J. 20, 7259–7270.

    Article  Google Scholar 

  • Michel, F. and Lang, B.F. (1985). Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature 316, 641–643.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Mohr, G., Perlman, P.S. and Lambowitz, A.M. (1993). Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acid Res. 21, 4991–4997.

    Article  PubMed  CAS  Google Scholar 

  • Morl, M. and Schmelzer, C. (1990). Integration of group II intron bl1 into a foreign RNA by reversal of the self-splicing reaction in vitro. Cell 60, 629–636.

    Article  PubMed  CAS  Google Scholar 

  • Rest, J.S. and Mindell, D.P. (2003). Retroids in Archaea: phylogeny and laterial origins. Mol. Biol. Evol. 20, 1134–1142.

    Article  PubMed  CAS  Google Scholar 

  • Saldanha, R., Mohr, G., Belfort, M. and Lambowitz, A.M. (1993). Group I and group II introns. FASEB J. 7, 15–24.

    PubMed  CAS  Google Scholar 

  • Shimamoto, T., Shimada, M., Inouye, M. and Inouye, S. (1995). The role of ribonuclease H in multicopy single-stranded DNA synthesis in retron-Ec73 and retron-Ec107 of Escherichia coli. J. Bacteriol. 177, 264–267.

    PubMed  CAS  Google Scholar 

  • Singh, R.N., Saldanha, R.J., D’Souza, L.M. and Lambowitz, A.M. (2002). Binding of a group II intron-encoded reverse transcriptase-maturase to its high affinity intron RNA binding site involves sequence-specific recognition and autoregulates translation. J. Mol. Biol. 318, 287–303.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D., Zhong, J., Matsuura, M., Lambowitz, A.M. and Belfort, M. (2005). Recruitment of host functions suggests a repair pathway for late steps in group II intron retrohoming. Genes Dev. 19, 2477–2487.

    Article  PubMed  CAS  Google Scholar 

  • Steitz, T.A. (1999). DNA polymerases: structural diversity and common mechanisms. J. Biol. Chem. 274, 17395–17398.

    Article  PubMed  CAS  Google Scholar 

  • Sun, J., Inouye, M. and Inouye, S. (1991). Association of a retroelement with a P4-like cryptic prophage (retron-phage φ R73) integrated into the selenocystyl tRNA gene of Escherichia coli. J. Bacteriol. 173, 4171–4181.

    PubMed  CAS  Google Scholar 

  • Toor, N., Hausner, G. and Zimmerly, S. (2001). Co-evolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7, 1142–1152.

    Article  PubMed  CAS  Google Scholar 

  • Vellore, J., Moretz, S.E. and Lampson, B.C. (2004). A group II intron-type open reading frame from the thermophile Bacillus (Geobacillus) stearothermophilus encodes a heat-stable reverse transcriptase. Appl. Environ. Microbiol. 70, 7140–7147.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y. and Eickbush, T.H. (1990). Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353–3362.

    PubMed  CAS  Google Scholar 

  • Yamanaka, K., Shimamoto, T., Inouye, S. and Inouye, M. (2002). Retrons. In Mobile DNA II, N.L. Craig et al., eds. Washington, DC: ASM Press. pp. 784–795.

    Google Scholar 

  • Yao, J., Zhong, J. and Lambowitz, A.M. (2005). Gene targeting using randomly inserted group II introns (targetrons) recovered from an Escherichia coli gene disruption library. Nucleic Acid Res. 33, 3351–3362.

    Article  PubMed  CAS  Google Scholar 

  • Yee, T., Furuichi, T., Inouye, S. and Inouye, M. (1984). Multicopy single-stranded DNA isolated from a Gram-negative bacterium, Myxococcus xanthus. Cell 38, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, J., Karberg, M. and Lambowitz, A.M. (2003). Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. Nucleic Acid Res. 31, 1656–1664.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, J. and Lambowitz, A.M. (2003). Group II intron mobility using nascent strands at DNA replication forks to prime reverse transcription. EMBO J. 22, 4555–4565.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerly, S., Hausner, G. and Wu, X.-C. (2001). Phylogenetic relationships among group II intron ORFs. Nucleic Acid Res. 29, 1238–1250.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lampson, B.C. (2007). Prokaryotic Reverse Transcriptases. In: Polaina, J., MacCabe, A.P. (eds) Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_23

Download citation

Publish with us

Policies and ethics