Skip to main content

Abstract

Isotope effects provide a powerful tool for learning structures of transition states, species that are not amenable for direct observation. In the case of enzymatic processes, however, their application for the purpose of transition state structure elucidation is often obscured by reaction complexity. However, experimental measurements of isotope effects, enhanced by theoretical QM/MM modeling of the chemical step of enzymatic catalysis, allows study of the changes that occur upon conversion of substrates to transition states. Information obtained about the nature of specific interactions within the active site of an enzyme may be used for practical purposes. In this communication we will summarize studies of haloacid dehalogenases, ornithine decarboxylase, and methylmalonyl-CoA mutase to exemplify these studies. Studies of transition state structure will also be presented for purine nucleoside phosphorylases (PNP). Experimental measurements of kinetic IEs for this enzyme together with theoretical analysis of their values led to rational synthesis of new inhibitors of this enzyme. The application of transition state theory to PNP has led to the most potent and specific inhibitors known for this important enzyme

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gherman BF, Goldberg SD, Cornish VW, Friesner RA (2004) Mixed quantum mechanical/molecular mechanical (QM/MM) study of the deacylation reaction in a penicillin binding protein (PBP) versus in a class C ß-lactamase. J. Am. Chem. Soc. 126:7652–7664

    Article  PubMed  CAS  Google Scholar 

  2. Szefczyk B, Mulholland A, Sokalski WA (2004) Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field. J. Am. Chem. Soc. 126:16148–16159

    Article  PubMed  CAS  Google Scholar 

  3. Klahn M, Braun-Sand S, Rosta E, Warshel A (2005) On possible pitfalls in ab initio quantum mechanics/molecular mechanics minimization approaches for studies of enzymatic reactions. J. Phys. Chem. B 109:15645–15650

    Article  PubMed  CAS  Google Scholar 

  4. König PH, Hoffmann M, Frauenheim Th, Cui Q (2005) A Critical evaluation of different QM/MM frontier treatments with SCC-DFTB as the QM method. J. Phys. Chem. B 109:9082–9095

    Article  PubMed  CAS  Google Scholar 

  5. Warshel A (2003) A Computer simulations of enzyme catalysis: Methods, progress, and insights. Annu. Rev. Biophys. Biomol. Struct. 32:425–443

    Article  CAS  Google Scholar 

  6. Gao J, Truhlar DG (2004) Generalized Hybrid Orbital (GHO) Method for Combining Ab Initio Hartree-Fock Wave Functions with Molecular Mechanics. J. Phys. Chem. A 108:632–650

    Article  CAS  Google Scholar 

  7. Gawlita E, Anderson VE (1994) Paneth P Semiempirical calculations of the oxygen equilibrium isotope effect on binding of oxamate to lactate dehydrogenase. Eur. Biophys J. 23:353–360

    Article  PubMed  CAS  Google Scholar 

  8. Gawlita E, Anderson VE, Paneth P (1995) Equilibrium isotope effect on ternary complex formation of [1-18O]oxamate with NADH and lactate dehydrogenase. Biochemistry 34:6050–6058

    Article  PubMed  CAS  Google Scholar 

  9. SiciŃska D, Truhlar DG, Paneth P (2005) Dependence of transition state structure on substrate: the intrinsic C-13 kinetic isotope effect is different for physiological and slow substrates of the ornithine decarboxylase reaction because of different hydrogen bonding structures. J. Am. Chem. Soc. 127:5414–5422

    Article  PubMed  CAS  Google Scholar 

  10. Swanson T, Brooks HB, Osterman AL, O’Leary MH, Phillips MA (1998) Carbon-13 isotope effect studies of Trypanosoma brucei ornithine decarboxylase. Biochemistry 37:14943–14947

    Article  PubMed  CAS  Google Scholar 

  11. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195

    Article  PubMed  ADS  CAS  Google Scholar 

  12. Alhambra C, Wu L, Zhang Y-Z, Gao J (1998) Walden-inversion-enforced transition-state stabilization in a protein tyrosine phosphatase. J. Am. Chem. Soc. 120:3858–3866

    Article  CAS  Google Scholar 

  13. Senn HM, Thiel S, Thiel H (2005) Enzymatic hydroxylation in p-hydroxybenzoate hydroxylase: a case study for QM/MM molecular dynamics. J. Chem. Theory Comput. 1:494–505

    Article  CAS  Google Scholar 

  14. Hata M, Tanaka Y, Fujii Y, Neya S, Hoshino T (2005) A theoretical study on the substrate deacylation mechanism of class C ß-lactamase. J. Phys. Chem. B 109:16153–16160

    Article  PubMed  CAS  Google Scholar 

  15. Mancia F, Evans PR (1998) Conformational changes on substrate binding to methylmalonyl CoA mutase and new insights into the free radical mechanism. Structure 6:711–720

    Article  PubMed  CAS  Google Scholar 

  16. Pittsburgh PA (2000) GaussView 2. Gaussian, Inc.

    Google Scholar 

  17. Singh U, Kollman P (1986) A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH3Cl+Cl- exchange reaction and gas-phase protonation of polyethers. J. Comput. Chem. 7:718–730

    Article  CAS  Google Scholar 

  18. Pittsburgh PA, Frisch MJ, et al. (2003) Gaussian 03, Revision A.1, Gaussian, Inc.

    Google Scholar 

  19. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 162:165–169

    Article  ADS  CAS  Google Scholar 

  20. Karlsruhe Quantum Chemistry Group, Turbomole homepage (2002) http://www.turbomole.com/

    Google Scholar 

  21. (a) Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A 38:3098–3100 (b) Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33:8822–8824

    Google Scholar 

  22. Schaefer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97:2571–2577

    Article  ADS  CAS  Google Scholar 

  23. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett. 240:283–290; erratum: Chem. Phys. Lett. 242:652–660

    Google Scholar 

  24. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 97:119–124

    CAS  Google Scholar 

  25. Ahlrichs R, Elliot S, Huniar U (2000) In: J. Grotendorst J (ed) Ab Initio Treatment of Large Molecules in Modern Methods and Algorithms of Quantum Chemistry. Proceedings, 2nd edn. John von Neumann Institute for Computing, Jülich, NIC Series 3, pp 7–25

    Google Scholar 

  26. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117:5179–5197

    Article  CAS  Google Scholar 

  27. (a) Marques HM, Ngoma B, Egan TJ, Brown KL (2001) Parameters for the AMBER Force Field for the Molecular Mechanics Modeling of the Cobalt Corrinoids. J. Mol. Struct. 561:71–91 (b) Marques HM, Brown KL (1995) A molecular mechanics force field for the cobalt corrinoids, J. Mol. Struct. (THEOCHEM) 340:97–124

    Google Scholar 

  28. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–5642

    Article  ADS  CAS  Google Scholar 

  29. Stephens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98:11623–11627

    Article  CAS  Google Scholar 

  30. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54:724–728

    Article  CAS  Google Scholar 

  31. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56:2257–2261

    Article  CAS  Google Scholar 

  32. Thomä NH, Meier TW, Evans PR, Leadlay PF (1998) Stabilization of radical intermediates by an active-site tyrosine residue in methylmalonyl-CoA mutase. Biochemistry 37:14386–14393

    Article  PubMed  Google Scholar 

  33. Vlasie M, Banerjee R (2003) Tyrosine 89 Accelerates Co-Carbon Bond Homolysis in Methylmalonyl-CoA Mutase. J. Am. Chem. Soc. 125:5431–5435

    Article  PubMed  CAS  Google Scholar 

  34. McDonald IK, Thornton IK (1994) Satisfying hydrogen-bonding potential in proteins. J. Mol. Biol. 238:777–793

    Article  PubMed  CAS  Google Scholar 

  35. Giblett ER, Ammann AJ, Wara DW, Sandman R, Diamond LK (1975) Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 1:1010–1013

    Article  PubMed  CAS  Google Scholar 

  36. Bantia S, Ananth SL, Parker CD, Horn LL, Upshaw R (2003) Mechanism of inhibition of T-acute lymphoblastic leukemia cells by PNP inhibitor – BCX-1777. Int Immunopharmacol. 3:879–887

    PubMed  CAS  Google Scholar 

  37. Schramm VL (2002) Development of transition state analogues of purine nucleoside phosphorylase as anti-T-cell agents. Biochim. Biophys. Acta 1587:107–117

    PubMed  CAS  Google Scholar 

  38. Queen SA, Jagt DL, Reyes P (1990) In vitro susceptibilities of Plasmodium falciparum to compounds which inhibit nucleotide metabolism. Antimicrob Agents Chemother. 34:1393–1398

    PubMed  CAS  Google Scholar 

  39. Kicska GA, Tyler PC, Evans GB, Furneaux RH, Schramm VL, Kim K (2003) Purine-less death in Plasmodium falciparum induced by Immucillin-H, a transition state analogue of purine nucleoside phosphorylase. J. Biol. Chem. 277:3226–3231

    Article  CAS  Google Scholar 

  40. Kicska GA, Tyler PC, Evans GB, Furneaux RH, Kim K, Schramm VL (2002) Transition state analogue inhibitors of purine nucleoside phosphorylase from Plasmodium falciparum. J. Biol. Chem. 277:3219–3225

    Article  PubMed  CAS  Google Scholar 

  41. Kline PC, Schramm VL (1993) Purine nucleoside phosphorylase. Catalytic mechanism and transition-state analysis of the arsenolysis reaction. Biochemistry 32:13212–13219

    Article  PubMed  CAS  Google Scholar 

  42. Berti PJ, Tanaka KSE (2002) Transition state analysis using multiple kinetic isotope effects: mechanisms of enzymatic and non-enzymatic glycoside hydrolysis and transfer. Adv. Phys. Org. Chem. 37:239–314

    Article  CAS  Google Scholar 

  43. Miles RW, Tyler PC, Furneaux RH, Bagdassarian CK, Schramm VL (1998) One-third-the-sites transition state inhibitors for purine nucleoside phosphorylase. Biochemistry 37:8615–8621

    Article  PubMed  CAS  Google Scholar 

  44. Furneaux RH, Limberg G, Tyler PC, Schramm VL (1997) Synthesis of transition state inhibitors for N-riboside hydrolases and transferases. Tetrahedron 53:2915–2930

    Article  CAS  Google Scholar 

  45. Kline PC, Schramm VL (1995) Pre-steady-state transition-state analysis of the hydrolytic reaction catalyzed by purine nucleoside phosphorylase. Biochemistry 34:1153–1162

    Article  PubMed  CAS  Google Scholar 

  46. Lewandowicz A, Schramm VL (2004) Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases. Biochemistry 43:1458–1468

    Article  PubMed  CAS  Google Scholar 

  47. Pham TV, Fang Y-R, Westaway KC (1997) Using secondary deuterium kinetic isotope effects to determine the symmetry of SN2 transition states. J. Am. Chem. Soc. 119:3670–3676

    Article  CAS  Google Scholar 

  48. Glad SS, Jensen F (1997) Transition state looseness and secondary kinetic isotope effects. J. Am. Chem. Soc. 119:227–232

    Article  CAS  Google Scholar 

  49. Birck MR, Schramm VL (2004) Nucleophilic participation in the transition state for human thymidine phosphorylase. J. Am. Chem. Soc. 126:2447–2453

    Article  PubMed  CAS  Google Scholar 

  50. Shi W, Ting LM, Kicska GA, Lewandowicz A, Tyler PC, Evans GB, Furneaux RH, Kim K, Almo SC, Schramm VL (2004) Plasmodium falciparum purine nucleoside phosphorylase: crystal structures, immucillin inhibitors, and dual catalytic function. J. Biol. Chem. 279:18103–18106

    Article  PubMed  CAS  Google Scholar 

  51. Kicska GA, Tyler PC, Evans GB, Furneaux RH, Shi W, Fedorov A, Lewandowicz A, Cahill SM, Almo SC, Schramm VL (2002) Atomic dissection of the hydrogen bond network for transition-state analogue binding to purine nucleoside phosphorylase. Biochemistry 41:14489–14498

    Article  PubMed  CAS  Google Scholar 

  52. Fedorov A, Shi W, Kicska GA, Fedorov E, Tyler PC, Furneaux RH, Hanson JC, Gainsford GJ, Larese JZ, Schramm VL, Almo SC (2001) Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis. Biochemistry 40:853–860

    Article  PubMed  CAS  Google Scholar 

  53. Horenstein BA, Parkin DW, Estupinan B, Schramm VL (1991) Transition-state analysis of nucleoside hydrolase from Crithidia fasciculate. Biochemistry 30:10788–10795

    Article  PubMed  CAS  Google Scholar 

  54. Schramm VL, Purich DL (1999) In: Methods in Enzymol. Enzyme Kinetics and Mechanism Part E. Energetics of Enzyme Catalysis 308:301–355

    Article  CAS  Google Scholar 

  55. Nunez S, Antoniou D, Schramm VL, Schwartz SD (2004) Promoting vibrations in human purine nucleoside phosphorylase. A molecular dynamics and hybrid quantum mechanical/molecular mechanical study. J. Am. Chem. Soc. 126:15720–15729

    Article  PubMed  CAS  Google Scholar 

  56. Birck MR, Schramm VL (2004) Nucleophilic participation in the transition state for human thymidine phosphorylase. J. Am. Chem. Soc. 126:2447–2453

    Article  PubMed  CAS  Google Scholar 

  57. Birck MR, Schramm VL (2004) Binding causes the remote [5-3H]thymidine kinetic isotope effect in human thymidine phosphorylase. J. Am. Chem. Soc. 126:6882–6883

    Article  PubMed  CAS  Google Scholar 

  58. Lewis BE, Schramm VL (2003) Binding equilibrium isotope effects for glucose at the catalytic domain of human brain hexokinase. J. Am. Chem. Soc. 125:4785–4798

    Article  PubMed  CAS  Google Scholar 

  59. Miller BG, Wolfenden R (2002) Catalytic proficiency: the unusual case of OMP decarboxylase. Annu. Rev. Biochem. 71:847–885

    Article  PubMed  CAS  Google Scholar 

  60. Wolfenden R (1999) Conformational aspects of inhibitor design: enzyme-substrate interactions in the transition state. Bioorg. Med. Chem. 7:647–652

    Article  PubMed  CAS  Google Scholar 

  61. Schramm VL (1998) Enzymatic transition states and transition state analog design. Annu. Rev. Biochem. 67:693–720

    Article  PubMed  CAS  Google Scholar 

  62. Schramm VL (2001) Transition state variation in enzymatic reactions. Curr. Opin. Chem. Biol. 5:556–563

    Article  PubMed  CAS  Google Scholar 

  63. Schramm VL (2003) Enzymatic transition state poise and transition state analogues. Acc. Chem. Res. 36:588–596

    Article  PubMed  CAS  Google Scholar 

  64. Lewandowicz A, Shi W, Evans GB, Tyler PC, Furneaux RH, Basso LA, Santos DS, Almo SC, Schramm VL (2003) Over-the-barrier transition state analogues and crystal structure with mycobacterium tuberculosis purine nucleoside phosphorylase. Biochemistry 42:6057–6066

    Article  PubMed  CAS  Google Scholar 

  65. Evans GB, Furneaux RH, Schramm VL, Singh V, Tyler PC (2004) Targeting the polyamine pathway with transition-state analogue inhibitors of 5-methylthioadenosine phosphorylase. J. Med. Chem. 47:3275–3281

    Article  PubMed  CAS  Google Scholar 

  66. Lewandowicz A, Tyler PC, Evans GB, Furneaux RH, Schramm VL (2003) Achieving the ultimate goal in transition state analogues for human purine nucleoside phosphorylase. J. Biol. Chem. 278:31465–31468

    Article  PubMed  CAS  Google Scholar 

  67. Politzer P, Truhlar G (1981) In: Chemical Applications of Atomic and Molecular Electrostatic Potentials. Plenum Press, New York, pp 1–6

    Google Scholar 

  68. Horenstein BA, Schramm VL (1993) Electronic nature of the transition state for nucleoside hydrolase. A blueprint for inhibitor design. Biochemistry 32:7089–7097

    Article  PubMed  CAS  Google Scholar 

  69. Bagdassarian CK, Schramm VL, Schwartz SD (1996) J. Am. Chem. Soc. 118:8825–8836

    Article  CAS  Google Scholar 

  70. Singh V, Evans GB, Lenz DH, Mason JM, Clinch K, Mee S, Painter GF, Tyler PC, Furneaux RH, Lee JE, Howell PL, Schramm VL (2005) Femtomolar transition state analogue inhibitors of 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli. J. Biol. Chem. 280:18265–18273

    Article  PubMed  CAS  Google Scholar 

  71. Lee JE, Singh V, Evans GB, Tyler PC, Furneaux RH, Cornell KA, Riscoe MK, Schramm VL, Howell PL (2005) Structural rationale for the affinity of pico- and femtomolar transition state analogues of Escherichia coli 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase. J. Biol. Chem. 280:18274–18282

    Article  PubMed  CAS  Google Scholar 

  72. Sauve AA, Cahill SM, Zech SG, Basso LA, Lewandowicz A, Santos DS, Grubmeyer C, Evans GB, Furneaux RH, Tyler PC, McDermott A, Girvin ME, Schramm VL (2003) Ionic states of substrates and transition state analogues at the catalytic sites of N-ribosyltransferases. Biochemistry 42:5694–5705

    Article  PubMed  CAS  Google Scholar 

  73. Morrison JE, Walsh CT (1988) The behavior and significance of slow-binding enzyme inhibitors. Adv. Enzymol. Relat. Areas Mol. Biol. 61:201–301

    Article  PubMed  CAS  Google Scholar 

  74. Evans GB, Furneaux RH, Lewandowicz A, Schramm VL, Tyler PC (2003) Synthesis of second-generation transition state analogues of human purine nucleoside phosphorylase. J. Med. Chem. 46:5271–5276

    Article  PubMed  CAS  Google Scholar 

  75. Zhou G-C, Parikh SL, Tyler PC, Evans GB, Furneaux GB, Zubkova OV, Benjes PA, Schramm VL (2004) Inhibitors of ADP-ribosylating bacterial toxins based on oxacarbenium ion character at their transition states. J. Am. Chem. Soc. 126:5690–5698

    Article  PubMed  CAS  Google Scholar 

  76. Deng H, Lewandowicz A, Schramm VL, Callender R (2004) Activating the phosphate nucleophile at the catalytic site of purine nucleoside phosphorylase: a vibrational spectroscopic study. J. Am. Chem. Soc. 126:9516–9517

    Article  PubMed  CAS  Google Scholar 

  77. Ting LM, Shi W, Lewandowicz A, Singh V, Mwakingwe A, Birck MR, Taylor Ringia EA, Bench G, Madrid DC, Tyler PC, Evans GB, Furneaux RH, Schramm, VL, Kim K (2004) Targeting a novel Plasmodium falciparum purine recycling pathway with specific immucillins. J. Biol. Chem. 280:9547–9554

    Article  PubMed  CAS  Google Scholar 

  78. Lewandowicz A, Taylor Ringia EA, Ting LM, Kim K, Tyler PC, Evans GB, Zubkova OV, Mee S, Painter GF, Lenz DH, Furneaux RH, Schramm VL (2005) Energetic mapping of transition state analogue interactions with human and Plasmodium falciparum purine nucleoside phosphorylases. J. Biol. Chem. 280:30320–30328

    Article  PubMed  CAS  Google Scholar 

  79. Singh V, Shi W, Evans GB, Tyler PC, Furneaux RH, Almo SC, Schramm VL (2004) Picomolar transition state analogue inhibitors of human 5-methylthioadenosine phosphorylase and X-ray structure with MT-immucillin-A. Biochemistry 43:9–18

    Article  PubMed  CAS  Google Scholar 

  80. Evans GB, Furneaux RH, Lenz DH, Painter GF, Schramm VL, Singh V, Tyler PC (2005) Second generation transition state analogue inhibitors of human 5-methylthioadenosine phosphorylase. J. Med. Chem. 48:4679–4689

    Article  PubMed  CAS  Google Scholar 

  81. Singh V, Lee JE, Nunez S, Howell PL, Schramm VL (2005) Transition state structure of 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues. Biochemistry 44:11647–11659

    Article  PubMed  CAS  Google Scholar 

  82. http://www.biocryst.com/bcx_4208.htm.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Kwiecień, R.A., Lewandowicz, A., Paneth, P. (2007). Substrate-Enzyme Interactions from Modeling and Isotope Effects. In: Sokalski, W.A. (eds) Molecular Materials with Specific Interactions – Modeling and Design. Challenges and Advances in Computational Chemistry and Physics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5372-X_7

Download citation

Publish with us

Policies and ethics