Skip to main content

Computational Enzymology: Insights into Enzyme Mechanism and Catalysis from Modelling

  • Chapter
Molecular Materials with Specific Interactions – Modeling and Design

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 4))

  • 1415 Accesses

Abstract

Modern modelling methods can now give a uniquely detailed understanding of enzyme-catalysed reactions, including analysing mechanisms and identifying determinants of specificity and catalytic efficiency. A new field of computational enzymology has emerged, which has the potential to contribute significantly to structure-based design, and in developing predictive models of drug metabolism; for example, in predicting the effects of genetic polymorphisms. This review outlines important techniques in this area, including quantum chemical model studies, and combined quantum mechanics/molecular mechanics (QM/MM) methods. Some recent applications to enzymes of pharmacological interest are also covered, showing the types of problems that can be tackled, and the insight they can give

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cunningham MA, PA Bash (1997) Computational enzymology. Biochimie 79 (11): 687–689

    PubMed  CAS  Google Scholar 

  2. Bruice TC, K Kahn (2000) Computational enzymology. Curr. Opin. Chem. Biol. 4 (5): 540–544

    PubMed  CAS  Google Scholar 

  3. Mulholland AJ (2005) Modelling enzyme reaction mechanisms, specificity and catalysis. Drug Discovery Today 10 (20): 1393–1402

    PubMed  CAS  Google Scholar 

  4. Field MJ (2002) Simulating enzyme reactions: Challenges and perspectives. J. Comput. Chem. 23 (1): 48–58

    PubMed  CAS  Google Scholar 

  5. Mulholland AJ, GH Grant, WG Richards (1993) Computer Modeling of Enzyme Catalyzed Reaction-Mechanisms. Protein Eng. 6 (2): 133–147

    PubMed  CAS  Google Scholar 

  6. Mulholland AJ, M Karplus (1996) Simulations of enzymic reactions. Biochem. Soc. Trans. 24 (1): 247–254

    PubMed  CAS  Google Scholar 

  7. AÅqvist J, A Warshel (1993) Simulation of Enzyme-Reactions Using Valence-Bond Force-Fields and Other Hybrid Quantum-Classical Approaches. Chem. Rev. 93 (7): 2523–2544

    Google Scholar 

  8. Perruccio F, L Ridder, AJ Mulholland (2003) Quantum-mechanical/molecular-mechanical methods in medicinal chemistry. In Quantum Medicinal Chemistry, edited by P Carloni and F Alber: Wiley-VCH.

    Google Scholar 

  9. Park S, JG Saven (2005) Computationally assisted protein design. Ann. Rep. Comp. Chem. 1: 245–253

    CAS  Google Scholar 

  10. Kuhlman B, G Dantas, GC Ireton, G Varani, BL Stoddard, D Baker (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302 (5649): 1364–1368

    PubMed  ADS  CAS  Google Scholar 

  11. Martì S, M Roca, J Andrés, V Moliner, E Silla, I Tuñòn, J Bertràn (2004) Theoretical insights in enzyme catalysis. Chem. Soc. Rev. 33 (2): 98–107

    PubMed  Google Scholar 

  12. Ridder L, JN Harvey, IMCM Rietjens, J Vervoort, AJ Mulholland (2003) Ab initio QM/MM modeling of the hydroxylation step in p-hydroxybenzoate hydroxylase. J. Phys. Chem. B 107 (9): 2118–2126

    CAS  Google Scholar 

  13. Ridder L, AJ Mulholland, IMCM Rietjens, J Vervoort (2000) A quantum mechanical/molecular mechanical study of the hydroxylation of phenol and halogenated derivatives by phenol hydroxylase. J. Am. Chem. Soc. 122 (36): 8728–8738

    CAS  Google Scholar 

  14. Karplus M, YQ Gao, JP Ma, A van der Vaart, W Yang (2005) Protein structural transitions and their functional role. Phil. Trans. Roy. Soc. London Ser. A 363 (1827): 331–355

    ADS  CAS  Google Scholar 

  15. Fersht A (1999) Structure and Mechanism in Protein Science. A Guide to Enyzme Catalysis and Protein Folding. New York: Freeman.

    Google Scholar 

  16. Garcia-Viloca M, J Gao, M Karplus, DG Truhlar (2004) How enzymes work: Analysis by modern rate theory and computer simulations. Science 303 (5655): 186–195

    PubMed  ADS  CAS  Google Scholar 

  17. Shurki A, A Warshel (2003) Structure/function correlations of proteins using MM, QM/MM, and related approaches: Methods, concepts, pitfalls, and current progress. Protein Sim.: Adv. Protein Chem. 66: 249–313

    CAS  Google Scholar 

  18. Olsson MHM, A Warshel (2004) Solute solvent dynamics and energetics in enzyme catalysis: The S(N)2 reaction of dehalogenase as a general benchmark. J. Am. Chem. Soc. 126 (46): 15167–15179

    PubMed  CAS  Google Scholar 

  19. Kohen A, R Cannio, S Bartolucci, JP Klinman (1999) Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 399 (6735): 496–499

    PubMed  ADS  CAS  Google Scholar 

  20. Masgrau L, A Roujeinikova, LO Johannissen, J Basran, KE Ranaghan, P Hothi, AJ Mulholland, MJ Sutcliffe, NS Scrutton, D Leys (2006) Atomic description of an enzyme reaction dominated by proton tunnelling. Science 312: 237–241

    PubMed  ADS  CAS  Google Scholar 

  21. Karplus M, and J Kuriyan (2005) Molecular dynamics and protein function. Proc. Natl. Acad. Sci. U. S. A. 102 (19): 6679–6685

    PubMed  ADS  CAS  Google Scholar 

  22. Daggett V, and A Fersht (2003) The present view of the mechanism of protein folding. Nature Reviews Mol. Cell. Biol. 4 (6): 497–502

    CAS  Google Scholar 

  23. Mayor U, NR Guydosh, CM Johnson, JG Grossmann, S Sato, GS Jas, SMV Freund, DOV Alonso, V Daggett, AR Fersht (2003) The complete folding pathway of a protein from nanoseconds to microseconds. Nature 421 (6925): 863–867

    PubMed  ADS  CAS  Google Scholar 

  24. Wong CF, JA McCammon (2003) Protein simulation and drug design. Protein Sim.: Adv. Protein Chem. 66: 87–121

    CAS  Google Scholar 

  25. Woods CJ, MH Ng, S Johnston, SE Murdock, B Wu, K Tai, H Fangohr, P Jeffreys, S Cox, JG Frey, MSP Sansom, and JW Essex (2005) Grid computing and biomolecular simulation. Phil. Trans. Roy. Soc. London Ser. A 363 (1833): 2017–2035

    ADS  CAS  Google Scholar 

  26. Elber R (2005) Long-timescale simulation methods. Curr. Opin. Struct. Biol. 15 (2): 151–156

    PubMed  CAS  Google Scholar 

  27. Sansom MSP, PJ Bond, SS Deol, A Grottesi, S Haider, ZA Sands (2005) Molecular simulations and lipid-protein interactions: potassium channels and other membrane proteins. Biochem. Soc. Trans. 33: 916–920

    PubMed  CAS  Google Scholar 

  28. Roux B (2002) Computational studies of the gramicidin channel. Acc. Chem. Res. 35 (6): 366–375

    PubMed  CAS  MathSciNet  Google Scholar 

  29. Gumbart J, Y Wang, A Aksimentiev, E Tajkhorshid, K Schulten (2005) Molecular dynamics simulations of proteins in lipid bilayers. Curr. Opin. Struct. Biol. 15 (4): 423–431

    PubMed  CAS  Google Scholar 

  30. Dittrich M, S Hayashi, K Schulten (2004) ATP hydrolysis in the beta(TP) and beta(DP) catalytic sites of F-1-ATPase. Biophys. J. 87 (5): 2954–2967

    PubMed  CAS  Google Scholar 

  31. McCammon JA, BR Gelin, M Karplus (1977) Dynamics of Folded Proteins. Nature 267 (5612): 585–590

    PubMed  ADS  CAS  Google Scholar 

  32. Case DA, TE Cheatham, III, T Darden, H Gohlke, R Luo, KM Merz, Jr, A Onufriev, C Simmerling, B Wang, and RJ Woods (2005) The Amber biomolecular simulation programs. J. Comput. Chem. 26 (16): 1668–1688. (See http://amber.scripps.edu/)

    PubMed  CAS  Google Scholar 

  33. Brooks BR, RE Bruccoleri, BD Olafson, DJ States, S Swaminathan, M Karplus (1983) CHARMM - a Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 4 (2): 187–217. (See http://www.charmm.org/)

    CAS  Google Scholar 

  34. Scott WRP, PH Hunenberger, IG Tironi, AE Mark, SR Billeter, J Fennen, AE Torda, T Huber, P Kruger, WF van Gunsteren (1999) The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103 (19): 3596–3607. (See http://www.igc.ethz.ch/gromos/gromos.html)

    CAS  Google Scholar 

  35. Phillips JC, R Braun, W Wang, J Gumbart, E Tajkhorshid, E Villa, C Chipot, RD Skeel, L Kale, K Schulten (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem. 26 (16): 1781–1802. (See http://www.ks.uiuc.edu/Research/namd/)

    PubMed  CAS  Google Scholar 

  36. TINKER Software Tools for Molecular Design 4.0, Saint Louis, MO.

    Google Scholar 

  37. Ponder JW, FM Richards (1987) An Efficient Newton-Like Method for Molecular Mechanics Energy Minimization of Large Molecules. J. Comput. Chem. 8 (7): 1016–1024. (See http://dasher.wustl.edu/tinker/)

    CAS  Google Scholar 

  38. Kim BC, T Young, E Harder, RA Friesner, BJ Berne (2005) Structure and dynamics of the solvation of bovine pancreatic trypsin inhibitor in explicit water: A comparative study of the effects of solvent and protein polarizability. J. Phys. Chem. B 109 (34): 16529–16538

    PubMed  CAS  Google Scholar 

  39. Lim D, C Jenson, MP Repasky, WL Jorgenson (1999) Solvent as Catalyst: Computational Studies of Organic Reactions in Solution. In Transition State Modeling for Catalysis, edited by D. G. Truhlar and K. Morokuma. Washington, DC: American Chemical Society.

    Google Scholar 

  40. MacKerell AD, Jr (2005) Empirical Force Fields for Proteins: Current Status and Future Directions. Ann. Rep. Comp. Chem. 1: 91

    CAS  Google Scholar 

  41. Ponder JW, DA Case (2003) Force fields for protein simulations. Protein Sim.: Adv. Protein Chem. 66: 27

    CAS  Google Scholar 

  42. Jorgensen WL, DS Maxwell, J Tirado-Rives (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118 (45): 11225–11236

    CAS  Google Scholar 

  43. Kaminski GA, RA Friesner, J Tirado-Rives, WL Jorgensen (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105 (28): 6474–6487

    CAS  Google Scholar 

  44. MacKerell AD, Jr, D Bashford, M Bellott, RL Dunbrack, JD Evanseck, MJ Field, S Fischer, J Gao, H Guo, S Ha, D Joseph-McCarthy, L Kuchnir, K Kuczera, FTK Lau, C Mattos, S Michnick, T Ngo, DT Nguyen, B Prodhom, WE Reiher, B Roux, M Schlenkrich, JC Smith, R Stote, J Straub, M Watanabe, J Wiòrkiewicz-Kuczera, D Yin, and M Karplus (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102 (18): 3586–3616

    CAS  Google Scholar 

  45. Cornell WD, P Cieplak, CI Bayly, IR Gould, KM Merz, Jr, DM Ferguson, DC Spellmeyer, T Fox, JW Caldwell, PA Kollman (1995) A 2nd Generation Force-Field for the Simulation of Proteins, Nucleic-Acids, and Organic-Molecules. J. Am. Chem. Soc. 117 (19): 5179–5197

    CAS  Google Scholar 

  46. Price DJ, CL Brooks III (2002) Modern protein force fields behave comparably in molecular dynamics simulations. J. Comput. Chem. 23 (11): 1045–1057

    PubMed  CAS  Google Scholar 

  47. Feller SE, DX Yin, RW Pastor, AD MacKerell, Jr (1997) Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: Parameterization and comparison with diffraction studies. Biophys. J. 73 (5): 2269–2279

    PubMed  CAS  Google Scholar 

  48. Cheatham TE, III (2005) Molecular Modeling and Atomistic Simulation of Nucleic Acids. Ann. Rep. Comp. Chem. 1: 75

    CAS  Google Scholar 

  49. Cheatham TE, III (2004) Simulation and modeling of nucleic acid structure, dynamics and interactions. Curr. Opin. Struct. Biol. 14 (3): 360–367

    PubMed  CAS  Google Scholar 

  50. Foloppe N, AD MacKerell Jr (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21 (2): 86–104

    CAS  Google Scholar 

  51. MacKerell AD, Jr, NK Banavali (2000) All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J. Comput. Chem. 21 (2): 105–120

    CAS  Google Scholar 

  52. Cheatham TE, III, P Cieplak, PA Kollman (1999) A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J. Biomol. Struct. Dyn. 16 (4): 845–862

    PubMed  CAS  Google Scholar 

  53. Imberty A, S Perez (2000) Structure, conformation, and dynamics of bioactive oligosaccharides: Theoretical approaches and experimental validations. Chem. Rev. 100 (12): 4567–4588

    PubMed  CAS  Google Scholar 

  54. French AD, GP Johnson, AM Kelterer, MK Dowd, CJ Cramer (2001) QM/MM distortion energies in di- and oligosaccharides complexed with proteins. Int. J. Quantum Chem. 84 (4): 416–425

    CAS  Google Scholar 

  55. McNamara JP, AM Muslim, H Abdel-Aal, H Wang, M Mohr, IH Hillier, RA Bryce (2004) Towards a quantum mechanical force field for carbohydrates: a reparametrized semi-empirical MO approach. Chem. Phys. Lett. 394 (4–6): 429–436

    CAS  Google Scholar 

  56. Schuler LD, X Daura, WF van Gunsteren (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem. 22 (11): 1205–1218

    CAS  Google Scholar 

  57. Neria E, S Fischer, M Karplus (1996) Simulation of activation free energies in molecular systems. J. Chem. Phys. 105 (5): 1902–1921

    ADS  CAS  Google Scholar 

  58. Jorgensen WL, J Tirado-Rives (1988) The OPLS Potential Functions for Proteins – Energy Minimizations for Crystals of Cyclic-Peptides and Crambin. J. Am. Chem. Soc. 110 (6): 1657–1666

    CAS  Google Scholar 

  59. Weiner SJ, PA Kollman, DA Case, UC Singh, C Ghio, G Alagona, S Profeta, P Weiner (1984) A New Force-Field for Molecular Mechanical Simulation of Nucleic-Acids and Proteins. J. Am. Chem. Soc. 106 (3): 765–784

    CAS  Google Scholar 

  60. Lazaridis T, M Karplus (1999) Effective energy function for proteins in solution. Proteins: Struct., Funct., Genet. 35 (2): 133–152

    CAS  Google Scholar 

  61. Schaefer M, C Bartels, F Leclerc, M Karplus (2001) Effective atom volumes for implicit solvent models: Comparison between Voronoi volumes and minimum fluctuation volumes. J. Comput. Chem. 22 (15): 1857–1879

    PubMed  CAS  Google Scholar 

  62. Lee MS, FR Salsbury, CL Brooks III (2002) Novel generalized Born methods. J. Chem. Phys. 116 (24): 10606–10614

    ADS  CAS  Google Scholar 

  63. Lee MS, M Feig, FR Salsbury, CL Brooks III (2003) New analytic approximation to the standard molecular volume definition and its application to generalized born calculations (vol 24, pg 1348, 2003). J. Comput. Chem. 24 (14): 1821

    CAS  Google Scholar 

  64. Im WP, MS Lee, CL Brooks III (2003) Generalized born model with a simple smoothing function. J. Comput. Chem. 24 (14): 1691–1702

    PubMed  CAS  Google Scholar 

  65. Ferrara P, J Apostolakis, A Caflisch (2002) Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins: Struct., Funct., Genet. 46 (1): 24–33

    CAS  Google Scholar 

  66. Jorgensen WL, J Tirado-Rives (2005) Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci. U. S. A. 102 (19): 6665–6670

    PubMed  ADS  CAS  Google Scholar 

  67. Gresh N, JP Piquemal, M Krauss (2005) Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contributions. Comparisons with parallelab initio computations. J. Comput. Chem. 26 (11): 1113–1130

    PubMed  CAS  Google Scholar 

  68. Vorobyov IV, VM Anisimov, AD MacKerell Jr (2005) Polarizable empirical force field for alkanes based on the classical drude oscillator model. J. Phys. Chem. B 109 (40): 18988–18999

    PubMed  CAS  Google Scholar 

  69. Anisimov VM, G Lamoureux, IV Vorobyov, N Huang, B Roux, AD MacKerell, Jr (2005) Determination of electrostatic parameters for a polarizable force field based on the classical Drude oscillator. J. Chem. Theory Comput. 1 (1): 153–168

    Google Scholar 

  70. Patel S, AD MacKerell, Jr, CL Brooks III (2004) CHARMM fluctuating charge force field for proteins: II – Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J. Comput. Chem. 25 (12): 1504–1514

    PubMed  CAS  Google Scholar 

  71. Harder E, BC Kim, RA Friesner, BJ Berne (2005) Efficient simulation method for polarizable protein force fields: Application to the simulation of BPTI in liquid. J. Chem. Theory Comput. 1 (1): 169–180

    Google Scholar 

  72. Kaminski GA, HA Stern, BJ Berne, RA Friesner (2004) Development of an accurate and robust polarizable molecular mechanics force field fromab initio quantum chemistry. J. Phys. Chem. A 108 (4): 621–627

    CAS  Google Scholar 

  73. Kaminski GA, HA Stern, BJ Berne, RA Friesner, YXX Cao, RB Murphy, RH Zhou, TA Halgren (2002) Development of a polarizable force field for proteins viaab initio quantum chemistry: First generation model and gas phase tests. J. Comput. Chem. 23 (16): 1515–1531

    PubMed  CAS  Google Scholar 

  74. Ren PY, JW Ponder (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B 107 (24): 5933–5947

    CAS  Google Scholar 

  75. MacKerell AD, Jr, M Feig, CL Brooks III (2004b) Improved treatment of the protein backbone in empirical force fields. J. Am. Chem. Soc. 126 (3): 698–699

    CAS  Google Scholar 

  76. MacKerell AD, Jr, M Feig, CL Brooks III (2004a) Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25 (11): 1400–1415

    CAS  Google Scholar 

  77. Himo F, PEM Siegbahn (2003) Quantum chemical studies of radical-containing enzymes. Chem. Rev. 103 (6): 2421–2456

    PubMed  CAS  Google Scholar 

  78. Van der Vaart A, V Gogonea, SL Dixon, KM Merz, Jr (2000) Linear scaling molecular orbital calculations of biological systems using the semiempirical divide and conquer method. J. Comput. Chem. 21 (16): 1494–1504

    Google Scholar 

  79. Khandogin J, DM York (2004) Quantum descriptors for biological macromolecules from linear-scaling electronic structure methods. Proteins 56 (4): 724–737

    PubMed  CAS  Google Scholar 

  80. Khandogin J, K Musier-Forsyth, DM York (2003) Insights into the regioselectivity and RNA-binding affinity of HIV-1 nucleocapsid protein from linear-scaling quantum methods. J. Mol. Biol. 330 (5): 993–1004

    PubMed  CAS  Google Scholar 

  81. Carloni P, U Röthlisberger, M Parrinello (2002) The role and perspective of a initio molecular dynamics in the study of biological systems. Acc. Chem. Res. 35 (6): 455–464

    PubMed  CAS  Google Scholar 

  82. Car R, and M Parrinello (1985) Unified Approach for Molecular-Dynamics and Density-Functional Theory. Phys. Rev. Lett. 55 (22): 2471–2474

    PubMed  ADS  CAS  Google Scholar 

  83. Remler DK, PA Madden (1990) Molecular-Dynamics without Effective Potentials Via the Car-Parrinello Approach. Mol. Phys. 70 (6): 921–966

    CAS  Google Scholar 

  84. Eichinger M, P Tavan, J Hutter, M Parrinello (1999) A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields. J. Chem. Phys. 110 (21): 10452–10467

    ADS  CAS  Google Scholar 

  85. Warshel A (2003) Computer simulations of enzyme catalysis: Methods, progress, and insights. Ann. Rev. Biophys. Biomol. Struct. 32: 425–443

    CAS  Google Scholar 

  86. Bentzien J, RP Muller, J Florian, A Warshel (1998) Hybrid ab initio quantum mechanics molecular mechanics calculations of free energy surfaces for enzymatic reactions: The nucleophilic attack in subtilisin. J. Phys. Chem. B 102 (12): 2293–2301

    CAS  Google Scholar 

  87. Warshel A (1997) Computer Modeling of Chemical Reactions in Enzymes and Solutions. New York: John Wiley & Sons

    Google Scholar 

  88. Florian J, MF Goodman, A Warshel (2003) Computer simulation of the chemical catalysis of DNA polymerases: Discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase. J. Am. Chem. Soc. 125 (27): 8163–8177

    PubMed  CAS  Google Scholar 

  89. Varnai P, A Warshel (2000) Computer simulation studies of the catalytic mechanism of human aldose reductase. J. Am. Chem. Soc. 122 (16): 3849–3860

    CAS  Google Scholar 

  90. Zhang YK, J Kua, JA McCammon (2003) Influence of structural fluctuation on enzyme reaction energy barriers in combined quantum mechanical/molecular mechanical studies. J. Phys. Chem. B 107 (18): 4459–4463

    CAS  Google Scholar 

  91. Gao JL, DG Truhlar (2002) Quantum mechanical methods for enzyme kinetics. Annu. Rev. Phys. Chem. 53: 467–505

    PubMed  CAS  Google Scholar 

  92. Mulholland AJ (2001) The QM/MM Approach to Enzymatic Reactions. In Theoretical Biochemistry, edited by L. A. Erikkson. Amsterdam: Elsevier.

    Google Scholar 

  93. Friesner RA, V Guallar (2005)Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu. Rev. Phys. Chem. 56: 389–427

    PubMed  CAS  Google Scholar 

  94. Ridder L, IMCM Rietjens, J Vervoort, AK Mulholland (2002) Quantum mechanical/molecular mechanical free energy Simulations of the glutathione S-transferase (M1-1) reaction with phenanthrene 9,10-oxide. J. Am. Chem. Soc. 124 (33): 9926–9936

    PubMed  CAS  Google Scholar 

  95. Martì S, V Moliner (2005) Improving the QM/MM description of chemical processes: A dual level strategy to explore the potential energy surface in very large systems. J. Chem. Theory Comput. 1 (5): 1008–1016

    Google Scholar 

  96. Prat-Resina X, JM Bofill, A Gonzalez-Lafont, JM Lluch (2004) Geometry optimization and transition state search in enzymes: Different options in the microiterative method. Int. J. Quantum Chem. 98 (4): 367–377

    CAS  Google Scholar 

  97. Warshel A, M Levitt (1976) Theoretical Studies of Enzymic Reactions - Dielectric, Electrostatic and Steric Stabilization of Carbonium-Ion in Reaction of Lysozyme. J. Mol. Biol. 103 (2): 227–249

    PubMed  CAS  Google Scholar 

  98. Ranaghan KE, AJ Mulholland (2004) Conformational effects in enzyme catalysis: QM/MM free energy calculation of the ‘NAC’ contribution in chorismate mutase. Chem. Comm. (10): 1238–1239

    Google Scholar 

  99. Ranaghan KE, L Ridder, B Szefczyk, WA Sokalski, JC Hermann, AJ Mulholland (2004) Transition state stabilization and substrate strain in enzyme catalysis:ab initio QM/MM modelling of the chorismate mutase reaction. Organic & Biomolecular Chemistry 2 (7): 968–980

    CAS  Google Scholar 

  100. Mulholland AJ, PD Lyne, M Karplus (2000)Ab initio QM/MM study of the citrate synthase mechanism. A low-barrier hydrogen bond is not involved. J. Am. Chem. Soc. 122 (3): 534–535

    CAS  Google Scholar 

  101. Woodcock HL, M Hodoscek, P Sherwood, YS Lee, HF Schaefer, BR Brooks (2003) Exploring the quantum mechanical/molecular mechanical replica path method: a pathway optimization of the chorismate to prephenate Claisen rearrangement catalyzed by chorismate mutase. Theor. Chem. Acc. 109 (3): 140–148

    CAS  Google Scholar 

  102. Field MJ, PA Bash, M Karplus (1990) A Combined Quantum-Mechanical and Molecular Mechanical Potential for Molecular-Dynamics Simulations. J. Comput. Chem. 11 (6): 700–733

    CAS  Google Scholar 

  103. Lyne PD, M Hodoscek, M Karplus (1999) A hybrid QM-MM potential employing Hartree-Fock or density functional methods in the quantum region. J. Phys. Chem. A 103 (18): 3462–3471

    CAS  Google Scholar 

  104. Cui Q, M Elstner, E Kaxiras, T Frauenheim, M Karplus (2001) A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. J. Phys. Chem. B 105 (2): 569–585

    CAS  Google Scholar 

  105. Riccardi D, GH Li, Q Cui (2004) Importance of van der Waals interactions in QM/MM Simulations. J. Phys. Chem. B 108 (20): 6467–6478

    CAS  Google Scholar 

  106. Jensen L, PT van Duijnen (2005) The first hyperpolarizability of p-nitroaniline in 1,4-dioxane: A quantum mechanical/molecular mechanics study. J. Chem. Phys. 123 (7):-

    Google Scholar 

  107. Greatbanks SP, JE Gready, AC Limaye, AP Rendell (1999) Enzyme polarization of substrates of dihydrofolate reductase by different theoretical methods. Proteins: Struct., Funct., Genet. 37 (2): 157–165

    CAS  Google Scholar 

  108. Poulsen TD, M Garcia-Viloca, JL Gao, DG Truhlar (2003) Free energy surface, reaction paths, and kinetic isotope effect of short-chain Acyl-CoA dehydrogenase. J. Phys. Chem. B 107 (35): 9567–9578

    CAS  Google Scholar 

  109. Brooks CL, III, M Karplus, BM Pettitt (1988) Proteins, A Theoretical Perspective of Dynamics, Structure and Thermodynamics. New York: Wiley.

    Google Scholar 

  110. Cui Q, M Karplus (2002) Quantum mechanics/molecular mechanics studies of triosephosphate isomerase-catalyzed reactions: Effect of geometry and tunneling on proton-transfer rate constants. J. Am. Chem. Soc. 124 (12): 3093–3124

    PubMed  CAS  Google Scholar 

  111. Im W, S Berneche, B Roux (2001) Generalized solvent boundary potential for computer simulations. J. Chem. Phys. 114 (7): 2924–2937

    ADS  CAS  Google Scholar 

  112. Schaefer P, D Riccardi, Q Cui (2005) Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules. J. Chem. Phys. 123 (1):-

    Google Scholar 

  113. Nam K, JL Gao, DM York (2005) An efficient linear-scaling Ewald method for long-range electrostatic interactions in combined QM/MM calculations. J. Chem. Theory Comput. 1 (1): 2–13

    CAS  Google Scholar 

  114. Monard G, M Loos, V Théry, K Baka, and JL Rivail (1996) Hybrid classical quantum force field for modeling very large molecules. Int. J. Quantum Chem. 58 (2): 153–159

    CAS  Google Scholar 

  115. Assfeld X, JL Rivail (1996) Quantum chemical computations on parts of large molecules: The ab initio local self consistent field method. Chem. Phys. Lett. 263 (1–2): 100–106

    CAS  Google Scholar 

  116. Gao JL, P Amara, C Alhambra, MJ Field (1998) A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations. J. Phys. Chem. A 102 (24): 4714–4721

    CAS  Google Scholar 

  117. Ferre N, X Assfeld, JL Rivail (2002) Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method. J. Comput. Chem. 23 (6): 610–624

    PubMed  CAS  Google Scholar 

  118. Antonczak S, G Monard, MF Ruiz-Lopez, JL Rivail (1998) Modeling of peptide hydrolysis by thermolysin. A semiempirical and QM/MM study. J. Am. Chem. Soc. 120 (34): 8825–8833

    CAS  Google Scholar 

  119. Garcia-Viloca M, JL Gao (2004) Generalized hybrid orbital for the treatment of boundary atoms in combined quantum mechanical and molecular mechanical calculations using the semiempirical parameterized model 3 method. Theor. Chem. Acc. 111 (2–6): 280–286

    CAS  Google Scholar 

  120. Pu JZ, JL Gao, DG Truhlar (2004b) Generalized hybrid orbital (GHO) method for combining ab initio Hartree-Fock wave functions with molecular mechanics. J. Phys. Chem. A 108 (4): 632–650

    CAS  Google Scholar 

  121. Pu JZ, JL Gao, DG Truhlar (2004a) Combining self-consistent-charge density-functional tight-binding (SCC-DFTB) with molecular mechanics by the generalized hybrid orbital (GHO) method. J. Phys. Chem. A 108 (25): 5454–5463

    CAS  Google Scholar 

  122. Pu JZ, JL Gao, DG Truhlar (2005) Generalized hybrid-orbital method for combining density functional theory with molecular mechanicals. ChemPhysChem 6 (9): 1853–1865

    PubMed  CAS  Google Scholar 

  123. Amara P, MJ Field (2003) Evaluation of an ab initio quantum mechanical/molecular mechanical hybrid-potential link-atom method. Theor. Chem. Acc. 109 (1): 43–52

    CAS  Google Scholar 

  124. Reuter N, A Dejaegere, B Maigret, M Karplus (2000) Frontier bonds in QM/MM methods: A comparison of different approaches. J. Phys. Chem. A 104 (8): 1720–1735

    CAS  Google Scholar 

  125. Antes I, W Thiel (1999) Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods. J. Phys. Chem. A 103 (46): 9290–9295

    CAS  Google Scholar 

  126. Zhang YK, T-S Lee, WT Yang (1999) A pseudobond approach to combining quantum mechanical and molecular mechanical methods. J. Chem. Phys. 110 (1): 46–54

    ADS  CAS  Google Scholar 

  127. Das D, KP Eurenius, EM Billings, P Sherwood, DC Chatfield, M Hodoscek, BR Brooks (2002) Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method. J. Chem. Phys. 117 (23): 10534–10547

    ADS  CAS  Google Scholar 

  128. Konig PH, M Hoffmann, T Frauenheim, Q Cui (2005) A critical evaluation of different QM/MM frontier treatments with SCC-DFTB as the QM method. J. Phys. Chem. B 109 (18): 9082–9095

    PubMed  CAS  Google Scholar 

  129. Ridder L, AJ Mulholland (2003) Modeling biotransformation reactions by combined quantum mechanical/molecular mechanical approaches: From structure to activity. Curr. Topics Med. Chem. 3 (11): 1241–1256

    CAS  Google Scholar 

  130. Berman HM, J Westbrook, Z Feng, G Gilliland, TN Bhat, H Weissig, IN Shindyalov, PE Bourne (2000) The Protein Data Bank. Nucleic Acids Res. 28 (1): 235–242. (See http://www.rcsb.org/pdb/)

    PubMed  CAS  Google Scholar 

  131. Kast P, M Asif-Ullah, D Hilvert (1996) Is chorismate mutase a prototypic entropy trap? Activation parameters for the Bacillus subtilis enzyme. Tetrahedron Lett. 37 (16): 2691–2694

    CAS  Google Scholar 

  132. Lyne PD, AJ Mulholland, WG Richards (1995) Insights into Chorismate Mutase Catalysis from a Combined QM/MM Simulation of the Enzyme Reaction. J. Am. Chem. Soc. 117 (45): 11345–11350

    CAS  Google Scholar 

  133. Martì S, J Andrés, V Moliner, E Silla, I Tuñòn, J Bertràn (2000) A QM/MM study of the conformational equilibria in the chorismate mutase active site. The role of the enzymatic deformation energy contribution. J. Phys. Chem. B 104 (47): 11308–11315

    Google Scholar 

  134. Ranaghan KE, L Ridder, B Szefczyk, WA Sokalski, JC Hermann, AJ Mulholland (2003) Insights into enzyme catalysis from QM/MM modelling: transition state stabilization in chorismate mutase. Mol. Phys. 101 (17): 2695–2714

    CAS  Google Scholar 

  135. Martì S, J Andrés, V Moliner, E Silla, I Tuñòn, J Bertràn (2001) Transition structure selectivity in enzyme catalysis: a QM/MM study of chorismate mutase. Theor. Chem. Acc. 105 (3): 207–212

    Google Scholar 

  136. Szefczyk B, AJ Mulholland, KE Ranaghan, WA Sokalski (2004) Differential transition-state stabilization in enzyme catalysis: Quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field. J. Am. Chem. Soc. 126 (49): 16148–16159

    PubMed  CAS  Google Scholar 

  137. Strajbl M, A Shurki, M Kato, A Warshel (2003) Apparent NAC effect in chorismate mutase reflects electrostatic transition state stabilization. J. Am. Chem. Soc. 125 (34): 10228–10237

    PubMed  CAS  Google Scholar 

  138. Guo H, Q Cui, WN Lipscomb, M Karplus (2001) Substrate conformational transitions in the active site of chorismate mutase: Their role in the catalytic mechanism. Proc. Natl. Acad. Sci. U. S. A. 98 (16): 9032–9037

    PubMed  ADS  CAS  Google Scholar 

  139. Martì S, J Andrés, V Moliner, E Silla, I Tuñòn, J Bertràn (2003). Preorganization and reorganization as related factors in enzyme catalysis: The chorismate mutase case. Chem. Eur. J. 9 (4): 984–991

    Google Scholar 

  140. Guimarães CRW, MP Repasky, J Chandrasekhar, J Tirado-Rives, WL Jorgensen (2003) Contributions of conformational compression and preferential transition state stabilization to the rate enhancement by chorismate mutase. J. Am. Chem. Soc. 125 (23): 6892–6899

    PubMed  Google Scholar 

  141. Hur S, TC Bruice (2003b) Enzymes do what is expected (chalcone isomerase versus chorismate mutase). J. Am. Chem. Soc. 125 (6): 1472–1473

    CAS  Google Scholar 

  142. Hur S, TC Bruice (2003a) Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E-coli mutase: The efficiency of the enzyme catalysis. J. Am. Chem. Soc. 125 (19): 5964–5972

    CAS  Google Scholar 

  143. Hur S, TC Bruice (2003c) Just a near attack conformer for catalysis (chorismate to prephenate rearrangements in water, antibody, enzymes, and their mutants). J. Am. Chem. Soc. 125 (35): 10540–10542

    CAS  Google Scholar 

  144. Claeyssens F, KE Ranaghan, FR Manby, JN Harvey, AJ Mulholland (2005) Multiple high-level QM/MM reaction paths demonstrate transition-state stabilization in chorismate mutase: correlation of barrier height with transition-state stabilization. Chem. Comm. (40): 5068–5070

    Google Scholar 

  145. Jaguar 4.0. Schrödinger, Inc., Portland, Oregon.

    Google Scholar 

  146. Harvey JN (2004) Spin-forbidden CO ligand recombination in myoglobin. Faraday Discuss. 127: 165–177

    PubMed  CAS  MathSciNet  Google Scholar 

  147. Lee YS, SE Worthington, M Krauss, BR Brooks (2002) Reaction mechanism of chorismate mutase studied by the combined potentials of quantum mechanics and molecular mechanics. J. Phys. Chem. B 106 (46): 12059–12065

    CAS  Google Scholar 

  148. Crespo A, DA Scherlis, MA Marti, P Ordejon, AE Roitberg, DA Estrin (2003) A DFT-based QM-MM approach designed for the treatment of large molecular systems: Application to chorismate mutase. J. Phys. Chem. B 107 (49): 13728–13736

    CAS  Google Scholar 

  149. Meunier B, SP de Visser, S Shaik (2004) Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem. Rev. 104 (9): 3947–3980

    PubMed  CAS  Google Scholar 

  150. Shaik S, D Kumar, SP de Visser, A Altun, W Thiel (2005) Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem. Rev. 105 (6): 2279–2328

    PubMed  CAS  Google Scholar 

  151. Ogliaro F, N Harris, S Cohen, M Filatov, SP de Visser, S Shaik (2000b) A model ‘‘rebound’’ mechanism of hydroxylation by cytochrome P450: Stepwise and effectively concerted pathways, and their reactivity patterns. J. Am. Chem. Soc. 122 (37): 8977–8989

    CAS  Google Scholar 

  152. Ogliaro F, S Cohen, M Filatov, N Harris, S Shaik (2000a) The high-valent compound of cytochrome P450: The nature of the Fe-S bond and the role of the thiolate ligand as an internal electron donor. Angew. Chem., Int. Ed. Engl. 39 (21): 3851-+

    CAS  Google Scholar 

  153. Yoshizawa K, T Kamachi, Y Shiota (2001) A theoretical study of the dynamic behavior of alkane hydroxylation by a compound I model of cytochrome P450. J. Am. Chem. Soc.123 (40): 9806–9816

    PubMed  CAS  Google Scholar 

  154. de Visser SP, F Ogliaro, N Harris, S Shaik (2001a) Multi-state epoxidation of ethene by cytochrome P450: A quantum chemical study. J. Am. Chem. Soc. 123 (13): 3037–3047

    CAS  Google Scholar 

  155. de Visser SP, F Ogliaro, S Sason (2001b) Stereospecific oxidation by Compound I of Cytochrome P450 does not proceed in a concerted synchronous manner. Chem. Comm. (22): 2322–2323

    Google Scholar 

  156. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14 (6): 611–650

    PubMed  CAS  Google Scholar 

  157. Bathelt CM, L Ridder, AJ Mulholland, JN Harvey (2003) Aromatic hydroxylation by cytochrome P450: Model calculations of mechanism and substituent effects. J. Am. Chem. Soc. 125 (49): 15004–15005

    PubMed  CAS  Google Scholar 

  158. Bathelt CM, L Ridder, AJ Mulholland, JN Harvey (2004) Mechanism and structure-reactivity relationships for aromatic hydroxylation by cytochrome P450. Organic & Biomolecular Chemistry 2 (20): 2998–3005

    CAS  Google Scholar 

  159. de Groot MJ, SB Kirton, MJ Sutcliffe (2004) In silico methods for predicting ligand binding determinants of cytochromes P450. Curr. Topics Med. Chem. 4 (16): 1803–1824

    CAS  Google Scholar 

  160. Pirmohamed M, BK Park (2003) Cytochrome P450 enzyme polymorphisms and adverse drug reactions. Toxicology 192 (1): 23–32

    PubMed  CAS  Google Scholar 

  161. Schoneboom JC, S Cohen, H Lin, S Shaik, W Thiel (2004) Quantum mechanical/molecular mechanical investigation of the mechanism of C–H hydroxylation of camphor by cytochrome P450(cam): Theory supports a two-state rebound mechanism. J. Am. Chem. Soc. 126 (12): 4017–4034

    PubMed  Google Scholar 

  162. Guallar V, MH Baik, SJ Lippard, RA Friesner (2003) Peripheral heme substituents control the hydrogen-atom abstraction chemistry in cytochromes P450. Proc. Natl. Acad. Sci. U. S. A. 100 (12): 6998–7002

    PubMed  ADS  CAS  Google Scholar 

  163. Bathelt CM, J urek, AJ Mulholland, JN Harvey (2005) Electronic structure of compound I in human isoforms of cytochrome P450 from QM/MM modeling. J. Am. Chem. Soc. 127 (37): 12900–12908

    PubMed  CAS  Google Scholar 

  164. Hermann JC, L Ridder, AJ Mulholland, H-D Höltje (2003) Identification of Glu166 as the general base in the acylation reaction of class A beta-lactamases through QM/MM modeling. J. Am. Chem. Soc. 125 (32): 9590–9591

    PubMed  CAS  Google Scholar 

  165. Hermann JC, C Hensen, L Ridder, AJ Mulholland, H-D Höltje (2005) Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. J. Am. Chem. Soc. 127 (12): 4454–4465

    PubMed  CAS  Google Scholar 

  166. Hermann JC, L Ridder, H-D Höltje, AJ Mulholland (2006) Molecular mechanisms of antibiotic resistance: QM/MM modelling of deacylation in a class A beta-lactamase. Organic & Biomolecular Chemistry 4 (2): 206–210

    CAS  Google Scholar 

  167. Lodola A, M Mor, JC Hermann, G Tarzia, D Piomelli, AJ Mulholland (2005) QM/MM modelling of oleamide hydrolysis in fatty acid amide hydrolase (FAAH) reveals a new mechanism of nucleophile activation. Chem. Comm. (35): 4399–4401

    Google Scholar 

  168. Alhambra C, ML Sanchez, JC Corchado, J Gao, DG Truhlar (2002) Quantum mechanical tunneling in methylamine dehydrogenase. Chem. Phys. Lett. 355 (3–4): 388–394

    CAS  Google Scholar 

  169. Tresadern G, H Wang, PF Faulder, NA Burton, IH Hillier (2003) Extreme tunnelling in methylamine dehydrogenase revealed by hybrid QM/MM calculations: potential energy surface profile for methylamine and ethanolamine substrates and kinetic isotope effect values. Mol. Phys. 101 (17): 2775–2784

    CAS  Google Scholar 

  170. Bjelic S, J AÅqvist (2004) Computational prediction of structure, substrate binding mode, mechanism, and rate for a malaria protease with a novel type of active site. Biochemistry 43 (46): 14521–14528

    PubMed  CAS  Google Scholar 

  171. Cho KB, V Pelmenschikov, A Gräslund, PEM Siegbahn (2004) Density functional calculations on class III ribonucleotide reductase: Substrate reaction mechanism with two formates. J. Phys. Chem. B 108 (6): 2056–2065

    CAS  Google Scholar 

  172. Bassan A, MRA Blomberg, PEM Siegbahn (2004) A theoretical study of the cis-dihydroxylation mechanism in naphthalene 1, 2-dioxygenase. J. Biol. Inorg. Chem. 9 (4): 439–452

    PubMed  CAS  Google Scholar 

  173. Borowski T, A Bassan, PEM Siegbahn (2004) 4-hydroxyphenylpyruvate dioxygenase: A hybrid density functional study of the catalytic reaction mechanism. Biochemistry 43 (38): 12331–12342

    PubMed  CAS  Google Scholar 

  174. Xu DG, YS Wei, JB Wu, D Dunaway-Mariano, H Guo, Q Cui, JL Gao (2004) QM/MM studies of the enzyme-catalyzed dechlorination of 4-chlorobenzoyl-CoA provide insight into reaction energetics. J. Am. Chem. Soc. 126 (42): 13649–13658

    PubMed  CAS  Google Scholar 

  175. Li GH, Q Cui (2003) What is so special about Arg 55 in the catalysis of cyclophilin A? Insights from hybrid QM/MM simulations. J. Am. Chem. Soc. 125 (49): 15028–15038

    PubMed  CAS  Google Scholar 

  176. Cisneros GA, M Wang, P Silinski, MC Fitzgerald, WT Yang (2004) The protein backbone makes important contributions to 4-oxalocrotonate tautomerase enzyme catalysis: Understanding from theory and experiment. Biochemistry 43 (22): 6885–6892

    PubMed  CAS  Google Scholar 

  177. Martì S, V Moliner, M Tuñòn, IH Williams (2005) Computing kinetic isotope effects for chorismate mutase with high accuracy. A new DFT/MM strategy. J. Phys. Chem. B 109 (9): 3707–3710

    PubMed  Google Scholar 

  178. Ruggiero GD, IH Williams, M Roca, V Moliner, I Tuñòn (2004) QM/MM determination of kinetic isotope effects for COMT-catalyzed methyl transfer does not support compression hypothesis. J. Am. Chem. Soc. 126 (28): 8634–8635

    PubMed  CAS  Google Scholar 

  179. Guimarães CRW, M Udier-Blagovic, WL Jorgensen (2005) Macrophomate synthase: QM/MM simulations address the Diels-Alder versus Michael-Aldol reaction mechanism. J. Am. Chem. Soc. 127 (10): 3577–3588

    PubMed  Google Scholar 

  180. Park H, EN Brothers, KM Merz Jr (2005) Hybrid QM/MM and DIFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis. J. Am. Chem. Soc. 127 (12): 4232–4241

    PubMed  CAS  Google Scholar 

  181. Dinner AR, GM Blackburn, M Karplus (2001) Uracil-DNA glycosylase acts by substrate autocatalysis. Nature 413 (6857): 752–755

    PubMed  ADS  CAS  Google Scholar 

  182. Crespo A, MA Marti, DA Estrin, AE Roitberg (2005) Multiple-steering QM-MM calculation of the free energy profile in chorismate mutase. J. Am. Chem. Soc. 127 (19): 6940–6941

    PubMed  CAS  Google Scholar 

  183. Gleeson MP, IH Hillier, NA Burton (2004) Theoretical analysis of peptidyl alpha-ketoheterocyclic inhibitors of human neutrophil elastase: Insight into the mechanism of inhibition and the application of QM/MM calculations in structure-based drug design. Organic & Biomolecular Chemistry 2 (16): 2275–2280

    CAS  Google Scholar 

  184. Röthlisberger U, P Carloni, K Doclo, M Parrinello (2000) A comparative study of galactose oxidase and active site analogs based on QM/MM Car Parrinello simulations. J. Biol. Inorg. Chem. 5 (2): 236–250

    PubMed  Google Scholar 

  185. Olsson MHM, PK Sharma, A Warshel (2005) Simulating redox coupled proton transfer in cytochrome c oxidase: Looking for the proton bottleneck. FEBS Lett. 579 (10): 2026–2034

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Mulholland, A.J., Grant, I.M. (2007). Computational Enzymology: Insights into Enzyme Mechanism and Catalysis from Modelling. In: Sokalski, W.A. (eds) Molecular Materials with Specific Interactions – Modeling and Design. Challenges and Advances in Computational Chemistry and Physics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5372-X_5

Download citation

Publish with us

Policies and ethics