Skip to main content

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 4))

  • 1450 Accesses

Abstract

Density functional theory (DFT)-based molecular dynamics (MD) has established itself as a valuable and powerful tool in studies of chemical reactions. Thanks to the rapid increase in power of modern computers, ab initio MD has nowadays become practical. Within the Car-Parinello approach, first-principle MD is already quite popular methodology in molecular modeling. MD reveals the dynamical effects at finite temperatures and is particularly useful in probing the potential energy surfaces. Also, it can be utilized to directly determine the reaction free-energy barriers, as it explicitly includes temperature temperature and thus the entropic effects. The first part of the chapter provides a brief introduction to ab initio MD, within the Born-Oppenheimer Born-Oppe nheimer MD and Car-Parinello approaches. Here, we introduce basic concepts of Car-Parinello MD Car-Parinello MD, with focus on the practical aspects of the simulation. The next part of the chapter summarizes the approaches used to overcome high-energy barriers in a simulation, and thus to probe the part of the potential energy surface relevant for chemical reactions (from the reactants to products through transition states). A special emphasis is placed on the MD simulation along the intrinsic reaction path. The last part of the chapter presents examples from CP-MD simulations from the studies on a complex catalytic process: copolymerization copolymerization of ethylene with polar monomers catalyzed by late transition-metal-complexes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Car R, Parrinello M, Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys Rev Lett, 55, 2471 (1985)

    Article  PubMed  ADS  CAS  Google Scholar 

  2. Marx D, Hutter J, Ab Initio Molecular Dynamics Theory and Implementation, In Modern Methods and Algorithms of Quantum Chemistry, edited by J Grotrndorst, NIC Series, Vol 1 John von Neumann Institute of Computing: Jülich,(2000), pp 301–449; and refs therein

    Google Scholar 

  3. Rothlisberger U, 15 Years of Car-Parrinello Simulations in Physics, Chemistry and Biology In: Computational Chemistry Reviews of Current Trends, Vol 6, edited by J Leszczynski (World Scientific, Singapore, 2001), pp 33–68

    Google Scholar 

  4. Carloni P, Rothlisberger U, Parrinello M, The Role and Perspective of Ab-initio Molecular Dynamics in the Study of Biological Systems, AccChem Res 35, 455–464 (2002)

    Article  CAS  Google Scholar 

  5. Andreoni W, Curioni A, New advances in chemistry and materials science with CPMD and parallel computing, Parallel Comput 26, 819–842 (2000)

    Article  MATH  Google Scholar 

  6. chl PE, Först2003 Blöchl PE, Först CJ, Schimpl J, The Projector Augmented Wave Method: Ab-initio Molecular Dynamics Simulations with Full Wave Functions, Bull Mater Sci 26, 33 (2003)

    Google Scholar 

  7. Magistrato A, Togni A, Rothlisberger U, Woo TK, Molecular Modeling of Enantioselective Hydrosilylation by Chiral Pd Based Homogeneous Catalysts with First-Principles and Combined QM/MM Molecular Dynamics Simulations In: Computational Modelling of Homogeneous Catalysis, edited by: F Maseras, A Lledos (Kluwer Academic, Dordrecht,2002), pp 213–252

    Google Scholar 

  8. chl1998 Blöchl P E, Senn H M, Togni A, Molecular Reaction Modeling from Ab-Initio Molecular Dynamics, In: Transition State Modeling for Catalysis, edited by D G Truhlar, K Morokuma, ACS Symposium Series 721 (American Chemical Society, Washington DC, 1998), pp 88–99

    Google Scholar 

  9. Woo TK, Margl PM, Deng L, Cavallo L, Ziegler T, Transition state Modeling for Catalysis, edited by D G Truhlar, K Morokuma, ACS Symposium Series 721 (American Chemical Society, Washington DC, 1998), pp 173–186

    Google Scholar 

  10. Baveridge DL, DiCapua FM, Free Energy Via Molecular Simulation: Applications to Chemical and Biomolecular Systems, Ann Rev Biophys Chem 18, 431–492 (1989)

    Article  Google Scholar 

  11. Ehrenfest P, Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik, Z Phys, 45, 455–457 (1927)

    Article  Google Scholar 

  12. Born M, Oppenheimer JR, On the Quantum Theory of Molecules, Ann Phys, 84, 457 (1927)

    CAS  Google Scholar 

  13. CPMD, Copyright IBM Corp 1990–2001, Copyright MPI fur Festkorperforschung Stuttgart 1997–2005

    Google Scholar 

  14. Trouiller N, Martins JL, Efficient pseudopotentials pseudopotentials for plane-wave plane-wave calculations, Phys Rev B, 43, 1993 (1991)

    Article  ADS  Google Scholar 

  15. Trouiller N, Martins JL, Efficient pseudopotentials pseudopotentials for plane-wave plane-wave calculations II Operators for fast iterative diagonalization, Phys Rev B, 43, 8861 (1991)

    Article  ADS  Google Scholar 

  16. Hellmann H, Zur Rolle der kinetischen Elektronenenergie für die zwischenatomaren Kräfte, Z Phys, 85, 180–190 (1933)

    Article  MATH  ADS  CAS  Google Scholar 

  17. Feynman R P, Forces forces in Molecules, Phys Rev, 56, 340 (1939)

    Article  MATH  ADS  Google Scholar 

  18. Pulay P, Ab initio Calculation of Force Constants and Equilibrium Geometries I Theory, Mol Phys, 17, 197 (1969)

    Article  ADS  CAS  Google Scholar 

  19. Pulay P, Derivative Methods in Quantum Chemistry, Adv Chem Phys, 69, 241 (1987)

    Article  CAS  Google Scholar 

  20. Leach AR, Molecular Modelling Principles and Applications (Pearson Education,2001); and refs therein

    Google Scholar 

  21. Woodcock LV, Isothermal molecular dynamics calculations for liquid salts, Chem Phys Lett, 10, 257–261 (1971)

    Article  ADS  CAS  Google Scholar 

  22. Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR, Molecular dynamics with coupling to an external bath, J Chem Phys, 81, 3684 (1984)

    Article  ADS  CAS  Google Scholar 

  23. Nose S Nose, Constant-temperature temperature molecular dynamics, Mol Phys, 57, 187 (1986)

    Article  CAS  Google Scholar 

  24. Hoover WG, Canonical dynamics: Equilibrium phase-space distributions, Phys Rev A, 31, 1695 (1985)

    Article  PubMed  ADS  Google Scholar 

  25. Tuckerman ME, Parrinello M, Integrating the Car–Parrinello equations I Basic integration techniques, J Chem Phys, 101, 1302 (1994)

    Article  ADS  CAS  Google Scholar 

  26. Hutter J, Tuckerman ME, Parrinello M, Integrating the Car–Parrinello equations III Techniques for ultrasoft pseudopotentials pseudopotentials, J Chem Phys, 102, 859 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Andersen HC, Molecular dynamics simulations at constant pressure and/or temperature temperature, J Chem Phys, 72, 2384–2393 (1980)

    Article  ADS  CAS  Google Scholar 

  28. Kelly E, M Seth, T Ziegler, Calculation of free energy free energy profiles for elementary bimolecular reactions by a initio molecular dynamics: Sampling methods and thermostat thermostat considerations, J Phys Chem A, 108, 2167–2180 (2004)

    Article  CAS  Google Scholar 

  29. Vanderbilt D Vanderbilt pseudopotential, Phys Rev B, Soft self-consistent pseudopotentials pseudopotentials in a generalized eigenvalue formalism, 41: 7892 (1990)

    Google Scholar 

  30. Goedecker S Goedecker pseudopotentials, K Maschke, Transferability of pseudopotentials pseudopotentials, Phys Rev A, 45: 88 (1992)

    Article  PubMed  ADS  Google Scholar 

  31. chl1994 Blöchl PE, Projector augmented-wave method, Phys Rev B, 50: 17953 (1994)

    Article  ADS  Google Scholar 

  32. chl1995 Blöchl PE, Electrostatic Decoupling of Periodic Images of Plane-Wave-Expanded Densities and Derived Point Charges, J Chem Phys, 103, 7422–7428 (1995)

    Article  ADS  Google Scholar 

  33. Michalak A, Ziegler T, First-principle molecular dynamic simulations along the intrinsic reaction paths, J Phys Chem A, 105, 4333–4343 (2001)

    Article  CAS  Google Scholar 

  34. Carter EA, Ciccotti G, Hynes JT, Kapral R, Constrained reaction coordinate reaction coordinate dynamics for the simulation of rare events, Chem Phys Lett, 156, 472–477 (1989)

    Article  ADS  CAS  Google Scholar 

  35. Paci E, Ciccotti G, Ferrario M, Kapral R, Activation energies by molecular dynamics with constraints, Chem Phys Lett, 176, 581–587 (1991)

    Article  ADS  CAS  Google Scholar 

  36. Ryckaert JP, Ciccotti G, Berendsen HJC, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes , J Comput Phys, 23, 327–341 (1977)

    Article  CAS  Google Scholar 

  37. Straatsma TP, Berendsen HJC, Postma JPM, Free energy of hydrophobic hydration: A molecular dynamics study of noble gases in water, J Chem Phys 85, 6720–6727 (1986)

    Article  ADS  CAS  Google Scholar 

  38. Sprik M, Ciccotti G, Free energy from constrained molecular dynamics, J Chem Phys 109, 7737–7744 (1998)

    Article  ADS  CAS  Google Scholar 

  39. Vuilleumier R, Sprik M, Electronic control of reactivity using density functional perturbation methods, Chem Phys Lett 365, 305–312 (2002)

    Article  CAS  Google Scholar 

  40. VandeVondele J, Rothlisberger U, Accelerating Rare Reactive Events by Means of a Finite Electronic Temperature, J Am Chem Soc, 124, 8163–8171 (2002)

    Article  PubMed  CAS  Google Scholar 

  41. Mosey NJ, Hu A, Woo TK, Ab initio molecular dynamics simulations with a HOMO–LUMO gap biasing potential to accelerate rare reaction events, Chem Phys Lett, 373, 498–505 (2003)

    Article  CAS  Google Scholar 

  42. Guidoni L, Rothlisberger U, Scanning reactive pathways with orbital biased Molecular Dynamics, J Chem Theory Comput, 1, 554–560 (2005)

    Article  CAS  Google Scholar 

  43. Fleurat-Lessard P, Ziegler T, Tracing the minimum-energy path on the free-energy surface free-energy surface, J Chem Phys, 123, 084101 (2005)

    Article  PubMed  CAS  Google Scholar 

  44. Laio A, Parrinello M, Escaping free-energy minima, ProcNatl Acad Sci, 99, 12562 (2002)

    Article  ADS  CAS  Google Scholar 

  45. Ianuzzi M, Laio A, Parrinello M, Efficient Exploration of Reactive Potential Energy Surfaces Using Car-Parrinello Molecular Dynamics, Phys Rev Lett, 90, 238302 (2003)

    Article  ADS  CAS  Google Scholar 

  46. Fukui K, The path of chemical reactions – the IRC IRC approach, Acc Chem Res, 14, 363–368 (1981)

    Article  ADS  CAS  Google Scholar 

  47. Tachibana A, Fukui K, Novel variational principles of chemical reaction, Theor Chem Acta (Berl), 57, 81–94 (1980)

    Article  CAS  Google Scholar 

  48. Perdew JP, Zunger A, Self-interaction correction to density-functional approximations for many-electron systems, Phys Rev B, 23, 5048 (1981)

    Article  ADS  CAS  Google Scholar 

  49. Becke A, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys RevA 38, 3098 (1988)

    Article  ADS  CAS  Google Scholar 

  50. Perdew JP, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys Rev B, 33, 8822 (1986)

    Article  ADS  Google Scholar 

  51. Perdew JP, Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys Rev B 34, 7406 (1986)

    Article  ADS  Google Scholar 

  52. Blöchl PE, Parinello M, Adiabaticity in first-principles molecular dynamics, Phys Rev B 45, 9413 (1992)

    Article  ADS  Google Scholar 

  53. Pearson PK, Schaefer HF III, Potential energy surface for the model unimolecular reaction HNC rightarrow HCN HCN isomerization, J Chem Phys, 62, 350–354 (1975)

    Article  ADS  CAS  Google Scholar 

  54. Redmon LT, Purvis GD III, RJ Bartlett, Correlation effects in the isomeric cyanides: HNC HCN HCN isomerization, LiNC LiCN, and BNC BCN, J Chem Phys 72, 986–991 (1980)

    Article  ADS  CAS  Google Scholar 

  55. Nobels RH, Random L, HOC + : An observable interstellar species? A comparison with the isomeric and isoelectronic HCO + , HCN HCN isomerization and HNC, Chem Phys , 60, 1–10 (1981)

    Article  Google Scholar 

  56. Peric, Maledenivic M, Ab initio study of the isomerization HNC to HCN HCN isomerization I Ab initio calculation of the HNC HCN potential surface and the corresponding energy levels, Chem Phys, 82, 317–336 (1983)

    Article  CAS  Google Scholar 

  57. Murrell JN, Carter S, Halonen LO, Frequency optimized potential energy functions for the ground-state surfaces of HCN HCN isomerization and HCP, J Mol Spectrosc 93,307–316 (1982)

    Article  ADS  CAS  Google Scholar 

  58. Holme TA, Hutchinson JS, Vibrational energy flow into a reactive coordinate: A theoretical prototype for a chemical system J Chem Phys, 83, 2860–2869 (1985)

    Article  ADS  CAS  Google Scholar 

  59. Pan CF, Hehre WJ, Heat of formation of hydrogen isocyanide by ion cyclotron double resonance spectroscopy, J Phys Chem, 86, 321 (1982)

    Article  Google Scholar 

  60. Ishida K, Morokuma K, Komornicki AJ, The intrinsic reaction coordinate reaction coordinate An ab initio calculation for HNCHCN and H –+CH4CH4+H – , J Chem Phys 66, 2153–2156 (1977)

    Article  ADS  CAS  Google Scholar 

  61. Muller K, Brown LD, Location of saddle points and minimum energy paths by a constrained simplex optimization procedure, Theoret Chim Acta (Berl) 53, 75–93 (1979)

    Article  Google Scholar 

  62. Garret BC et al, Algorithms and accuracy requirements for computing reaction paths by the method of steepest descent, J Phys Chem, 92, 1476–1478 (1988)

    Article  Google Scholar 

  63. Gonzalez C, Schegel HBJ, Reaction path following in mass-weighted internal coordinates, J Phys Chem , 94, 5523–5527 (1990)

    Article  CAS  Google Scholar 

  64. Deng L, Exploring Potential Energy Surfaces using Density Functional Theory and Intrinsic Reaction Coordinate Methods, PhD Thesis (University of Calgary, Calgary, 1996)

    Google Scholar 

  65. Deng L, Ziegler T, Combining Density Functional Theory and Intrinsic Reaction Coordinates, Int JQuant Chem, 52, 731–765 (1994)

    Article  CAS  Google Scholar 

  66. Car RW Jr, Walters WDJ, The Thermal Isomerization Isomerization of Cyclobutene, J Phys Chem, 69, 1073 (1965)

    Google Scholar 

  67. Wiberg KB, Fenoglio RA, Heats of formation of C4H6 hydrocarbons J Am Chem Soc, 90, 3395–3397 (1968)

    Article  CAS  Google Scholar 

  68. Lipnick RL, Garbisch EW Jr, Conformational analysis of 1,3-butadiene, J Am Chem Soc, 95, 6370–6375 (1973)

    Article  CAS  Google Scholar 

  69. Hsu K, Buenker RJ, Peyerimhoff SD, Theoretical determination of the reaction path in the prototype electrocyclic transformation between cyclobutene and cis-butadiene Thermochemical process J Am Chem Soc 93, 2117–2127 (1971)

    Article  Google Scholar 

  70. Hsu K, Buenker RJ, Peyerimhoff SD, Role of ring torsion in the electrocyclic transformation between cyclobutene and butadiene Theoretical study J Am Chem Soc 94, 5639–5644 (1972)

    Article  CAS  Google Scholar 

  71. Brulet J, Schaefer HF III, J Am Chem Soc, Conrotatory and disrotatory stationary points for the electrocyclic isomerization of cyclobutene to cis-butadiene 106, 1221–1226 (1984)

    Google Scholar 

  72. Wiest O, Houk KN, Density Functional Theory Calculations of Pericyclic Reaction Transition Structures. In: Density Functional Theory IV, edited by RF Nalewajski, Topics in Curr Chem 183(Springer, Berlin, Heilderberg, (1996), pp 2–24, and refs therein

    Google Scholar 

  73. Vetter R, Zulicke L, Theoretical study of potential wells and barriers for SN2 SN2 rearrangement in the systems (XCH3X)- with X=F , Cl, and Br, J Am Chem Soc,112, 5136–5142 (1990), and refs therein

    Article  CAS  Google Scholar 

  74. Tucker SC, Truhlar DG, Ab initio calculations of the transition-state geometry and vibrational frequencies of the SN2 SN2 reaction of chloride with chloromethane, J Phys Chem 93, 8138–8142 (1989), and refs therein

    Article  CAS  Google Scholar 

  75. Shi Z, Boyd RJ, Intrinsic barriers of some model SN2 SN2 reactions: second-order Moeller-Plesset perturbation calculations, J Am Chem Soc, 113, 2434–2439 (1991) and refs therein

    Article  CAS  Google Scholar 

  76. Hu W, Truhlar DG, Structural Distortion of CH3I in an Ion-Dipole Precursor Complex, J Phys Chem, 98, 1049– 1052 (1994), and refs therein

    Article  CAS  Google Scholar 

  77. Michalak A, Ziegler T, Organometallics, 22, 2660 (2003)

    Article  CAS  Google Scholar 

  78. Ittel SD, Johnson LK, Brookhart M, Late-Metal Catalysts for Ethylene Homo- and Copolymerization, Chem Rev, 100, 1169–1204 (2000), and refs therein

    Article  PubMed  CAS  Google Scholar 

  79. Boffa LS, Novak BM, Copolymerization of Polar Monomers with Olefins Using Transition-Metal Complexes, Chem Rev, 100, 1479–1494 (2000), and refs therein

    Article  PubMed  CAS  Google Scholar 

  80. Ziegler K, Holtzkamp E, Martin H, Breil, H, Das Mülheimer Normaldruck-Polyäthylen-Verfahren, Angew Chem, 67, 541 (1955)

    CAS  Google Scholar 

  81. Ziegler K, Holtzkamp E, Breil H, Martin H, Polymerisation Äthylen und Anderen Olefinen, Angew Chem, 67, 426 (1955)

    CAS  Google Scholar 

  82. Natta GJ, Une Nouvelle Classe de Polymeres d’a-Olefines ayant une Regularite de Structure Exceptionelle, Polym Sci, 16, 143 (1955);

    Article  CAS  Google Scholar 

  83. Natta GJ, Stereospezifische Katalysen und isotaktische Polymere, Angew Chem 68, 393 (1956)

    CAS  Google Scholar 

  84. Kaminsky W, Kulper K, Brintzinger HH, FRWP Wild, Polymerization of Propene and Butene with a Chiral Zirconocene and Methyl Aluminoxane as Cocatalyst, Angew Chem Int Ed Engl, 24, 507 (1985)

    Article  Google Scholar 

  85. Brintzinger HH, Fischer D, Mülhaupt R, Rieger B, Waymouth RM, Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts, Angew Chem Int Ed Engl 34, 1143 (1995), and refs Therein

    Article  CAS  Google Scholar 

  86. McKnight AL, Waymouth RM, Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization, Chem Rev 98, 2587–2598 (1998), and refs therein

    Article  PubMed  CAS  Google Scholar 

  87. Alt HG, Koppl A, Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization, ChemRev, 100, 1205–1222 (2000), and refs Therein

    CAS  Google Scholar 

  88. Coates GW, Precise Control of Polyolefin Stereochemistry Using Single-Site Metal Catalysts, ChemRev, 100, 1223–1252 (2000)

    CAS  Google Scholar 

  89. Britovsek GJP, Gibson VC, Wass DF, The Search for New-Generation Olefin Polymerization Catalyst: Life Beyond Metallocenes, Angew Chem Int Ed, 38, 428 (1999), and refs therein

    Article  CAS  Google Scholar 

  90. Beyond Metallocenes Next-Generation Polymerization Catalysts, edited by AO Patil, GG Hlatky, ACS Symp Ser 857 (ACS, Washington DC, 2003)

    Google Scholar 

  91. Johnson LK, Mecking S, Brookhart M, Copolymerization of Ethylene and Propylene with Functionalized Vinyl Monomers by Palladium(II) Catalysts, J Am Chem Soc, 118, 267–268 (1996)

    Article  MATH  CAS  Google Scholar 

  92. Mecking S, Johnson LK, Wang L, Brookhart M, Mechanistic Studies of the Palladium-Catalyzed Copolymerization of Ethylene and -Olefins with Methyl Acrylate, J Am Chem Soc, 120, 888–899 (1998)

    Article  CAS  Google Scholar 

  93. Tempel DJ, Johnson LK, Huff RL, White PS, Brookhart M, Mechanistic Studies of Pd(II)–Diimine-Catalyzed Olefin Polymerizations, J Am Chem Soc, 122, 6686–6700 (2000)

    Article  CAS  Google Scholar 

  94. Shultz LH, Brookhart M, Measurement of the Barrier to -Hydride Elimination in a -Agostic Palladium-Ethyl Complex: A Model for the Energetics of Chain-Walking in (-Diimine)PdR+ Olefin Polymerization Catalysts, Organometallics, 20, 3975–3982 (2001)

    Article  CAS  Google Scholar 

  95. Shultz LH, Tempel DJ, Brookhart M, Palladium(II) -Agostic Alkyl Cations and Alkyl Ethylene Complexes: Investigation of Polymer Chain Isomerization Isomerization Mechanisms, J Am Chem Soc, 123, 11539–11555 (2001)

    Article  PubMed  CAS  Google Scholar 

  96. Musaev DG, Froese RDJ, Morokuma K, Molecular Orbital and IMOMM Studies of the Chain Transfer Mechanisms of the Diimine-M(II)-Catalyzed (M=Ni, Pd) Ethylene Polymerization Reaction, Organometallics, 17, 1850–1860 (1998)

    Article  CAS  Google Scholar 

  97. Froese RDJ, Musaev DG, Morokuma K, Theoretical Study of Substituent Effects in the Diimine-M(II) Catalyzed Ethylene Polymerization Reaction Using the IMOMM Method, J Am Chem Soc, 120, 1581–1587 (1998)

    Article  CAS  Google Scholar 

  98. Schenck H, Stromberg S, Zetterberg K, Ludwig M, Akermark B, Svensson M, Insertion Aptitudes and Insertion Regiochemistry of Various Alkenes Coordinated to Cationic (-R)(diimine) palladium(II) (R= -CH3, -C6H5) A Theoretical Study, Organometallics, 20, 2813–2819 (2001)

    Google Scholar 

  99. Deng L, Margl P, Ziegler T, J Am Chem Soc, A Density Functional Study of Nickel(II) Diimide Catalyzed Polymerization of Ethylene, 119, 1094–1100 (1997)

    CAS  Google Scholar 

  100. Deng L, Woo TK, Cavallo L, Margl PM, Ziegler T, The Role of Bulky Substituents in Brookhart-Type Ni(II) Diimine Catalyzed Olefin Polymerization: A Combined Density Functional Theory and Molecular Mechanics Study, J Am Chem Soc, 119, 6177–6186 (1997)

    Article  CAS  Google Scholar 

  101. Michalak A, Ziegler T, Pd-catalyzed Polymerization of Propene – DFT Model Studies, Organometallics, 18, 3998–4004 (1999)

    Article  CAS  Google Scholar 

  102. Michalak A, Ziegler T, DFT studies on substituent effects in Pd-catalyzed olefin polymerization, Organometallics, 19, 1850–1858 (2000)

    Article  CAS  Google Scholar 

  103. Michalak A, Ziegler T, DFT Studies on the Copolymerization of a-Olefins with Polar Monomers: Comonomer Binding by Nickel- and Palladium-Based Catalysts with Brookhart and Grubbs Ligands, Organometallics, 20, 1521–1532 (2001)

    Article  CAS  Google Scholar 

  104. Michalak A, Ziegler T, DFT Studies on the Copolymerization of a-Olefins with Polar Monomers: Ethylene-Methyl Acrylate Copolymerization Catalyzed by a Pd-based Diimine Catalyst, J Am Chem Soc, 123, 12266–12278 (2001)

    Article  PubMed  CAS  Google Scholar 

  105. Michalak A, Ziegler T, Stochastic simulations of polymer growth and isomerization in the polymerization of propylene catalyzed by Pd-based diimine catalysts diimine catalysts, J Am Chem Soc, 124, 7519–7528 (2002)

    Article  PubMed  CAS  Google Scholar 

  106. Deubel D, Ziegler T, DFT Study of Olefin versus Nitrogen Bonding in the Coordination of Nitrogen-Containing Polar Monomers to Diimine and Salicylaldiminato Nickel(II) and Palladium(II) Complexes Implications for Copolymerization of Olefins with Nitrogen-Containing Polar Monomers, Organometallics, 21, 1603–1611 (2002)

    Article  CAS  Google Scholar 

  107. Michalak A, Ziegler T, Exploring the scope of possible microstructures accessible from polymerization of ethylene by late transition metal single-site catalysts A theoretical study, Macromolecules, 36, 928–933 (2003)

    Article  CAS  Google Scholar 

  108. Michalak A, Ziegler T, Polymerization of ethylene catalyzed by a Nickel (+2) anilinotropone-based catalyst: DFT and stochastic studies on the elementary reactions and the mechanism of polyethylene branching, Organometallics, 22, 2069–2079 (2003)

    Article  CAS  Google Scholar 

  109. Margl P, Michalak A, Ziegler T, Theoretical Studies on Copolymerization of Polar Monomers. In: Catalytic Synthesis of Alkene – Carbon Monoxide Copolymers and Cooligomers; edited by A Sen (Kluwer Academic Publishers, 2002), pp 265–307

    Google Scholar 

  110. Michalak A, Ziegler T, The Key Steps in Olefin Polymerization Catalyzed by Late Transition Metals. In: Computational Modeling of Homogeneous Catalysis, edited by F Maseras, A Lledos (Kluwer Academic Publishers, 2002)

    Google Scholar 

  111. Michalak A, Ziegler T, Theoretical Studies on the Polymerization and Copolymerization Processes Catalyzed by the Late-Transition Metal Complexes, in: Beyond Metallocenes Next-Generation Polymerization Catalysts; ACS Symp Series 857, edited by AO Patil, GG Hladky (American Chemical Society, Washington 2003), pp 154–172

    Google Scholar 

  112. Szabo MJ, Jordan RF, Michalak A, Piers WE, Weiss T, Sheng-Yong Yang, Ziegler T, Organometallics, 23, 5565 (2004)

    Article  CAS  Google Scholar 

  113. Sheng-Yong Yang, Szabo MJ, Michalak A, Weiss T, Piers WE, Jordan RF, Ziegler T, The Exploration of Neutral Azoligand-Based Grubbs Type Palladium(II) Complex as Potential Catalyst for the Copolymerization of Ethylene with Acrylonitrile: A Theoretical Study Based on Density Functional Theory, Organometallics, 24, 1242–1251 (2005)

    Article  CAS  Google Scholar 

  114. Szabo M J, Galea NM, Michalak A, Sheng-Yong Yang, Groux LF, Piers W E, Ziegler T, Copolymerization of Ethylene with Polar Monomers by Anionic Substitution A Theoretical Study Based on Acrylonitrile and the Brookhart Diimine Catalyst Organometallics, 24, 2147–2156 (2005)

    Article  CAS  Google Scholar 

  115. Haras A, Michalak A, Rieger B, Ziegler T, Theoretical analysis of factors controlling the non-alternating CO/C2H4 copolymerization copolymerization, J Am Chem Soc, 127, 8765–8774 (2005)

    Article  PubMed  CAS  Google Scholar 

  116. Szabo MJ, Galea NM, Michalak A, Sheng-Yong Yang, Groux LF, Piers W E, Ziegler T, Copolymerization of Ethylene with Polar Monomers:Chain Propagation and Side Reactions A DFT Theoretical Study Using Zwitterionic Ni(II) and Pd(II) Catalysts, J Am Chem Soc, 127, 14692–14702 (2005)

    Article  PubMed  CAS  Google Scholar 

  117. Coose P, Ziegler-Natta Catalysis I Mechanism of Polymerization of a-Olefins with Ziegler-Natta Catalyst, J Catal, 3, 80 (1964)

    Article  Google Scholar 

  118. Arlman EJ, Coose P, Ziegler-Natta Catalysis III Stereospecific Polymerization of Propene with the Catalyst System TiCl3-AlEt3 , J Catal, 3, 99 (1964)

    Article  CAS  Google Scholar 

  119. Michalak A, Two-reactant Fukui function and molecular electrostatic potential analysis of the methyl acrylate methyl acrylate binding mode in the complexes with the Ni- and Pd-diimine catalysts diimine catalysts, Chem Phys Lett, 386, 346–350 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Michalak, A., Ziegler, T. (2007). Modeling Chemical Reactions with First-Principle Molecular Dynamics. In: Sokalski, W.A. (eds) Molecular Materials with Specific Interactions – Modeling and Design. Challenges and Advances in Computational Chemistry and Physics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5372-X_4

Download citation

Publish with us

Policies and ethics