Skip to main content

A Quest for Efficient Methods of Disintegration of Organophosphorus Compounds: Modeling Adsorption and Decomposition Processes

  • Chapter
Molecular Materials with Specific Interactions – Modeling and Design

Abstract

The problem with a contamination of soil and groundwater by organophosphorus compounds is a widespread environmental concern with environmental deterioration. However, the high cost of remediation becomes evident. Organophosphorus compounds have several applications (agricultural, industrial, and military). Nevertheless, assessments of the hazards from these applications quite often do not take into account chemical processes. The management of contaminants requires considerable knowledge and understanding of contaminant behavior. Unique properties of transition metals and metal oxides such as having high adsorption and catalytic ability have resulted in their applications as natural adsorbents and catalysts in the development of clean-up technologies. An understanding of the physical characteristics of the adsorption sites of selected parts of soil (metal oxides) and transition metals, the physical and chemical characteristics of the contaminant, details of sorption of contaminants on soil, on soil in water solution, and on transition metals, and its distribution within the system is of practical interest. Quantum-chemical calculations provide more insight into the aforementioned characteristics of organophosphorus compounds. This review summarizes experimental studies and the computational techniques and applications which are used to develop theoretical models that explain and predict how transition metals and metal oxides can affect the adsorption and decomposition of selected organophosphorus compounds. The results can contribute to a better knowledge of impact of such processes in existing remedial technologies and in a development of new removal and decomposition techniques

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ekerdt JG, Klabunde KJ, Shapley JR, White JM, Yates JT (1988) Surface chemistry of organophosphorus compounds, J Phys Chem 92: 6182–6188

    Article  CAS  Google Scholar 

  2. Ewing KJ, Lerner B (2001) Infrared detection of the nerve agent sarin (isopropyl methylphosphonofluoridate) in water using magnesium oxide for preconcentration, Applied Spectroscopy 55(4): 407–411

    Article  ADS  Google Scholar 

  3. Haensel V, Burwell R (1971) Catalysis, Sci Am 225: 46–58

    Article  CAS  Google Scholar 

  4. Yang Y-Ch, Baker JA, Ward JR (1992) Decontamination of chemical warfare agents, Chem Rev 92: 1729–1743

    Article  CAS  Google Scholar 

  5. Yang Y-C (1999) Chemical Detoxification of Nerve Agent VX, Acc Chem Res 32: 109–115

    Article  CAS  Google Scholar 

  6. Nachon F, Asojo OA, Borgstahl G, Masson P, Lockridge O (2005) Role of water in aging of human butyrylcholinesterase inhibited by echothiophate: the crystal structure suggests two alternative mechanisms of aging, Biochemistry 44: 1154–1162

    Article  PubMed  CAS  Google Scholar 

  7. Toy A, Walsh E (1987) Phosphorus Chemistry in Everyday Living (Amer. Chem. Soc., Washington, D.C), pp. 319–330

    Google Scholar 

  8. Simpson B (2004) Sarin Nerve Gas - Or How I Learned to Stop Worrying and Love Pon-1, BioTech Journal 2: 100–105

    Google Scholar 

  9. http://www.dupont.com/safety/en/downloads/NerveAgentChemicalDataSheets.PDF

    Google Scholar 

  10. http://en.wikipedia.org/wiki/Tabun%28nerve_gas%29

    Google Scholar 

  11. Yang Y-Ch, Szafraniec LL, Beaudry WT, Rohrbaugh DK, Procell LR, Samuel JB (1996) Autocatalytic Hydrolysis of V-Type Nerve Agents, J Org Chem 61: 8407–8413

    Article  CAS  Google Scholar 

  12. http://www.dsf.health.state.pa.us/health/cwp/view.asp?a=171&q=233733

    Google Scholar 

  13. Guo X, Yoshinobu J, Yates JT, Jr (1990) Decomposition of an organophosphonate compound (dimethylmethylphosphonate) on the nickel(111) and palladium(111) surfaces, J Phys Chem 94(17): 6839–6842

    Article  Google Scholar 

  14. Henderson MA, White JM (1988) Adsorption and decomposition of dimethyl methylphosphonate on platinum(111), J Am Chem Soc 110: 6939–6947

    Article  Google Scholar 

  15. http://en.wikipedia.org/wiki/Platinum

    Google Scholar 

  16. http://en.wikipedia.org/wiki/Palladium

    Google Scholar 

  17. Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, Jiang Y, Lagadic I, Zhang D (1996) Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry, J Phys Chem 100: 12142–12153

    Article  CAS  Google Scholar 

  18. Stark JV, Park DG, Lagadic I, Klabunde KJ (1996) Nanoscale Metal Oxide Particles/Clusters as Chemical Reagents. Unique Surface Chemistry on Magnesium Oxide As Shown by Enhanced Adsorption of Acid Gases (Sulfur Dioxide and Carbon Dioxide) and Pressure Dependence, Chem Mater 8: 1904–1912

    Article  CAS  Google Scholar 

  19. Yu C, Hao Q, Saha S, Shi L (2005) Integration of metal oxide nanobelts with microsystems for nerve agent detection, Applied Physics Letters 86: 063101/1–063101/3

    CAS  Google Scholar 

  20. Khaleel A, Kapoor PN, Klabunde KJ (1999) Nanocrystalline metal oxides as new adsorbents for air purification, Nanostructured Materials 11(4): 459–468

    Article  Google Scholar 

  21. Ahdjoudj J, Markovits A, Minot C (1999) Hartree-Fock periodic study of the chemisorption of small molecules on TiO2 and MgO surfaces, Catalysis Today 50: 541–551

    Article  CAS  Google Scholar 

  22. Tomchenko AA, Harmer GP, Marquis BT (2005) Detection of chemical warfare agents using nanostructured metal oxide sensors, Sensors and Actuators B 108: 41–55

    Article  CAS  Google Scholar 

  23. Lee WS, Lee SC, Lee SJ, Lee DD, Huh JS, Jun HK, Kim JC (2005) The sensing behavior of SnO2-based thick-film gas sensors at a low concentration of chemical agent simulants, Sensors and Actuators B 108: 148–153

    Article  CAS  Google Scholar 

  24. Koper O, Li YX, Klabunde KJ (1993) Destructive adsorption of chlorinated hydrocarbons on ultrafine (nanoscale) particles of calcium oxide, Chem Mater 5: 500–505

    Article  CAS  Google Scholar 

  25. Medine GM, Zaikovskii V, Klabunde KJ (2004) Synthesis and adsorption properties of intimately intermingled mixed metal oxide nanoparticles, J Mater Chem 14: 757–763

    Article  CAS  Google Scholar 

  26. Sauer J (1989) Molecular models in ab initio studies of solids and surfaces: from ionic crystals and semiconductors to catalysts, Chem Rev 89: 199–255

    Article  CAS  Google Scholar 

  27. Maseras F, Morokuma K (1995) MOMM: a new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states, J Comp Chem 16: 1170–1179

    Article  CAS  Google Scholar 

  28. Schaefer HF (1977) Methods of Electronic Structure Theory in: Modern Theoretical Chemistry (Plenum Press, New York), Vol. 3

    Google Scholar 

  29. Čàsky P, Urban M (1980) Lecture Notes in Chemistry, No. 16: Ab Initio Calculations. Methods and Applications in Chemistry

    Google Scholar 

  30. Hehre WJ, Radom L, Schleyer PvR, People JA (1986) Ab Initio Molecular Orbital Theory (Wiley, New York)

    Google Scholar 

  31. Lawley K-P (1987) Ab Initio Methods in Quantum Chemistry (Wiley, New York)

    Google Scholar 

  32. Sauer J (1994) Theoretical Study of van der Waals Complexes at Surface Sites in Comparison with the Experiment, Chem Rev 94: 2095–2160

    Article  CAS  Google Scholar 

  33. Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals, Phys Rev B 48: 13115–13118

    Article  ADS  CAS  Google Scholar 

  34. Kresse G, Furthmülleer J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp Mat Sci 6: 15–50

    Article  CAS  Google Scholar 

  35. Perdew JP, Chevary JA, Vosko SH, Jackson AK, Pederson RM, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys Rev B 46(11): 6671–6687

    Article  ADS  Google Scholar 

  36. Vanderbilt D, Taole SH, Narasimhan S (1990) Anharmonic elastic and phonon properties of silicon, Phys Rev B 42(17): 11373–11374

    Article  ADS  Google Scholar 

  37. Mikheikin ID, Abronin IA, Zhidomirov GM, Kazansky VB (1977) Calculations of chemadsorption and elementary events of catalytic reactions within the framework of a cluster model. II. Properties of surface hydroxyl groups of oxides, Kinetics and Catalysis 18: 1580–1583

    CAS  Google Scholar 

  38. Beran S (1984) Quantum chemical study of the effect of the structural characteristics of zeolites on the properties of their bridging hydroxyl groups, J Mol Catal 26: 31–36

    Article  CAS  Google Scholar 

  39. Kazansky VB, Serykh AI, Pidko EA (2004) DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions: methane adsorption. Journal of Catalysis 225(2): 369–373

    Article  CAS  Google Scholar 

  40. Pelmenshchikov AG, Pavlov VI, Zhidomirov GM, Beran S (1987) Effects of structural and chemical characteristics of zeolites on the properties of their bridging hydroxyl groups, J Phys Chem 91: 3325–3327

    Article  CAS  Google Scholar 

  41. Anchell JL, Hess AC (1996) H2O Dissociation at Low-Coordinated Sites on (MgO)n Clusters, n=4, 8, J Phys Chem 100: 18317–18321

    Article  CAS  Google Scholar 

  42. Gorb LG, Rivail JL, Thery V, Rinaldi D (1996) Modification of the local self-consistent field method for modeling surface reactivity of covalent solids, Int J Quant Chem 60: 313–324

    Article  CAS  Google Scholar 

  43. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: A Multi-Layered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition, J Phys Chem 100: 19357–19363

    Article  CAS  Google Scholar 

  44. Van Santen RA, Kramer GJ (1995) Reactivity Theory of Zeolitic Broensted Acidic Sites, Chem Rev 95: 637–660

    Article  Google Scholar 

  45. Tomasi J, Mennucci B, Cammi R (2005) Quantum Mechanical Continuum Solvation Models, Chem Rev 105: 2999–3093

    Article  PubMed  CAS  Google Scholar 

  46. Sponer J, Leszczynski J, Hobza P (1996) Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies, J Biomol Struct and Dynamics 14: 117–135

    CAS  Google Scholar 

  47. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory, Phys Rev Lett 55: 2471–2474

    Article  PubMed  ADS  CAS  Google Scholar 

  48. Tuckerman M, Laasonen K, Sprik M, Parrinello M (1995)Ab Initio Molecular Dynamics Simulation of the Solvation and Transport of H3O+ and OH- Ions in Water, J Phys Chem 99: 5749–5752

    Article  CAS  Google Scholar 

  49. Sprik M, Hutter J, Parrinello M (1996) Ab initio molecular dynamics simulation of liquid water: comparison of three gradient-corrected density functionals, J Chem Phys 105: 1142–1152

    Article  ADS  CAS  Google Scholar 

  50. Laasonen K, Sprik M, Parrinello M (1993) ‘‘Ab initio’’ liquid water, J Chem Phys 99: 9080–9089

    Article  ADS  CAS  Google Scholar 

  51. Bianco R, Miertus S, Persico M, Tomasi J (1992) Molecular reactivity in solution. Modeling of the effects of the solvent and of its stochastic fluctuation on an SN2 reaction, Chem Phys 168: 281–292

    Article  CAS  Google Scholar 

  52. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab initio Molecular Potentials for the Prevision of Solvent Effects, Chem Phys 55: 117–129

    Article  CAS  Google Scholar 

  53. Cramer J, Truhlar DG (1995) Continuum Solvation Models: Classical and Quantum Mechanical Implementations, in: Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd, Vol.7 (VCH Publishers, Inc.)

    Google Scholar 

  54. Del Bene J (1985) Molecular orbital theory of the hydrogen bond: XXXII. The effect of H+ and Li+ association on the A—T and G—C pairs J Mol Struct (Theochem) 124: 201–212

    Article  CAS  Google Scholar 

  55. Tomasi J, Persico M (1994) Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent, Chem Rev 94: 2027–2094

    Article  Google Scholar 

  56. Smedarchina Z, Zgierski MZ, Siebrand W, Kozlowski PM (1998) Dynamics of tautomerism in porphine: An instanton approach, J Chem Phys 109: 1014–1024

    Article  ADS  CAS  Google Scholar 

  57. Smedarchina Z, Siebrand W, Zgierski MZ, Zerbetto F (1995) Dynamics of molecular inversion: an instanton approach, J Chem Phys 102: 7024–7034

    Article  ADS  CAS  Google Scholar 

  58. Smedarchina Z, Siebrand W, Fernandez-Ramos A, Gorb L, Leszczynski J (2000) A direct-dynamics study of proton transfer through water bridges in guanine and 7-azaindole, J Chem Phys 112: 566–573

    Article  ADS  CAS  Google Scholar 

  59. Smedarchina Z, Fernandez-Ramos A, Siebrand W (2001) DOIT: a program to calculate thermal rate constants and mode-specific tunneling splittings directly from quantum-chemical calculations, J Comp Chem 22: 787–801

    Article  CAS  Google Scholar 

  60. Truhlar DG, Garrett BC, Klippenstein SJ (1996) Current Status of Transition-State Theory, J Phys Chem 100: 12771–12800

    Article  CAS  Google Scholar 

  61. Tucker SC, Truhlar DG (1989) Dynamical Formulation of Transition State Theory: Variational Transition States and Semiclassical Tunneling, edited by J. Bertran and I. G. Csizmadia (Advanced Study Institute, Kluwer, Dordrecht), p. 291

    Google Scholar 

  62. Gonzalez-Lafont A, Troung TN, Truhlar DG (1991) Interpolated variational transition-state theory: practical methods for estimating variational transition-state properties and tunneling contributions to chemical reaction rates from electronic structure calculations, J Phys Chem 95: 8875–8894

    Article  CAS  Google Scholar 

  63. Yang Y-C (1995) Chemical reactions for neutralizing chemical warfare agents, Chem Ind 9: 334–337

    Google Scholar 

  64. Templeton MK, Weinberg WH (1985) Adsorption and decomposition of dimethyl methylphosphonate on an aluminum oxide surface, J Am Chem Soc 107: 97–108

    Article  CAS  Google Scholar 

  65. Templeton MK, Weinberg WH (1985) Decomposition of phosphonate esters adsorbed on aluminum oxide, J Am Chem Soc 107: 774–779

    Article  CAS  Google Scholar 

  66. Li Y-X, Klabunde KJ (1991) Nano-scale metal oxide particles as chemical reagents. Destructive adsorption of a chemical agent simulant, dimethyl methylphosphonate, on heat-treated magnesium oxide, Langmuir 7: 1388–1393

    Article  CAS  Google Scholar 

  67. Li Y-X, Schlup JR, Klabunde KJ (1991) Fourier transform infrared photoacoustic spectroscopy study of the adsorption of organophosphorus compounds on heat-treated magnesium oxide, Langmuir 7: 1394–1399

    Article  CAS  Google Scholar 

  68. Atteya M, Klabunde KJ (1991) Nanoscale metal oxide particles as chemical reagents. Heats of adsorption of heteroatom containing organics on heat-treated magnesium oxide samples of varying surface areas, Chem Mater 3: 182–187

    Article  CAS  Google Scholar 

  69. Li Y-X, Koper O, Atteya M, Klabunde KJ (1992) Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particles. In situ GC-MS studies of pulsed microreactions over magnesium oxide, Chem Mater 4: 323–330

    Article  CAS  Google Scholar 

  70. Henderson MA, Jin T, White JM (1986) A TPD/AES study of the interaction of dimethyl methylphosphonate with iron oxide (α-Fe2O3) and silicon dioxide, J Phys Chem 90: 4607–4611

    Article  CAS  Google Scholar 

  71. Aurian-Blajeni B, Boucher MM (1989) Interaction of dimethyl methylphosphonate with metal oxides, Langmuir 5: 170–174

    Article  CAS  Google Scholar 

  72. Mitchell MB, Sheinker VN, Mintz EA (1997) Adsorption and Decomposition of Dimethyl Methanephosphonate on Metal Oxides, J Phys Chem B 101: 11192–11203

    Article  CAS  Google Scholar 

  73. Sheinker VN, Mitchell MB (2002) Quantitative Study of the Decomposition of Dimethyl Methylphosphonate (DMMP) on Metal Oxides at Room Temperature and Above, Chem Matter 14: 1257–1268

    Article  CAS  Google Scholar 

  74. Mitchell MB, Sheinker VN, Tesfamichael AB, Gatimu EN, Nunley M (2003) Decomposition of Dimethyl Methylphosphonate (DMMP) on Supported Cerium and Iron Co-Impregnated Oxides at Room Temperature, J Phys Chem B 107: 580–586

    Article  CAS  Google Scholar 

  75. Kanan SM, Tripp CP (2001) An Infrared Study of Adsorbed Organophosphonates on Silica: A Prefiltering Strategy for the Detection of Nerve Agents on Metal Oxide Sensors, Langmuir 17: 2213–2218

    Article  CAS  Google Scholar 

  76. Kanan SM, Lu Z, Tripp CP (2002) A Comparative Study of the Adsorption of Chloro- and Non-Chloro-Containing Organophosphorus Compounds on WO3, J Phys Chem B 106: 9576–9580

    Article  CAS  Google Scholar 

  77. Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) Reactions of VX, GD, and HD with Nanosize MgO, J Phys Chem B 103: 3225–3228

    Article  CAS  Google Scholar 

  78. Wagner GW, Bartram PW, Koper O, Klabunde KJ (2000) Reactions of VX, GD, and HD with Nanosize CaO: Autocatalytic Dehydrohalogenation of HD, J Phys Chem B 104: 5118–5123

    Article  CAS  Google Scholar 

  79. Wagner GW, Procell LR, O’Connor RJ, Munavalli S, Carnes CL, Kapoor PN, Klabunde KJ (2001) Reactions of VX, GB, GD, and HD with nanosize Al(2)O(3). Formation of aluminophosphonates, J Am Chem Soc 123: 1636–1644

    Article  PubMed  CAS  Google Scholar 

  80. Kuiper AET, van Bokhoven JJG, Medena J (1976) The role of heterogeneity in the kinetics of a surface reaction. I. Infrared characterization of the adsorption structures of organophosphonates and their decomposition, J Catal 43: 154–167

    Article  CAS  Google Scholar 

  81. Michalkova A, Ilchenko M, Gorb L, Leszczynski J (2004) Theoretical Study of the Adsorption and Decomposition of Sarin on Magnesium Oxide, J Phys Chem B 108: 5294–5303

    Article  CAS  Google Scholar 

  82. Bader RWF (1990) Atoms in Molecules: A Quantum Theory (Oxford University Press: Oxford)

    Google Scholar 

  83. Koch U, Popelier PLA (1995) Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density, J Phys Chem 99: 9747–9754

    Article  CAS  Google Scholar 

  84. Popelier PAL (1998) Characterization of a Dihydrogen Bond on the Basis of the Electron Density, J Phys Chem A 102: 1873–1878

    Article  CAS  Google Scholar 

  85. Michalkova A, Gorb L, Ilchenko M, Zhikol OA, Shishkin OV, Leszczynski J (2004) Adsorption of Sarin and Soman on Dickite: An Ab Initio ONIOM Study, J Phys Chem B 108: 1918–1930

    Article  CAS  Google Scholar 

  86. Svensson M, Humbel S, Morokuma K (1996) Energetics using the single point IMOMO (integrated molecular orbital + molecular orbital) calculations: choices of computational levels and model system, J Chem Phys 105: 3654–3661

    Article  ADS  CAS  Google Scholar 

  87. Dapprich S, Komàromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives, J Mol Struct (Theochem) 461–462: 1–21

    Article  Google Scholar 

  88. Sokalski WA, Roszak S, Pecul K (1988) An efficient procedure for decomposition of the SCF interaction energy into components with reduced basis set dependence, Chem Phys Lett 153: 153–159

    Article  ADS  CAS  Google Scholar 

  89. Jeziorski B, van Hemert MC (1976) Variation-perturbation treatment of the hydrogen bond between water molecules, Mol Phys 31: 713–730

    Article  CAS  Google Scholar 

  90. Gora RW, Bartkowiak W, Roszak S, Leszczynski J (2002) New theoretical insight into the nature of intermolecular interactions in the molecular crystal of urea, J Chem Phys 117: 1031–1039

    Article  ADS  CAS  Google Scholar 

  91. Schmidt MS, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system, J Comp Chem 14: 1347–1363

    Article  CAS  Google Scholar 

  92. Michalkova A, Martinez J, Zhikol OA, Gorb L, Shishkin OV, Leszczynska D, Leszczynski J (2006) Theoretical Study of Adsorption of Sarin and Soman on Tetrahedral Edge Clay Mineral Fragments, J Phys Chem B, (submitted)

    Google Scholar 

  93. Murashov VV, Leszczynski J (1999) Adsorption of the Phosphate Groups on Silica Hydroxyls: An ab Initio Study, J Phys Chem A 103: 1228–1238

    Article  CAS  Google Scholar 

  94. Hartzell CJ, Cygan RT, Nagy KJ (1998) Molecular Modeling of the Tributyl Phosphate Complex of Europium Nitrate in the Clay Hectorite, J Phys Chem A 102(34): 6722–6729

    Article  Google Scholar 

  95. Zhanpeisov NU, Zhidomirov GM, Yudanov IV, Klabunde KJ (1994) Cluster Quantum Chemical Study of the Interaction of Dimethyl Methylphosphonate with Magnesium Oxide, J Phys Chem 98: 10032–10035

    Article  CAS  Google Scholar 

  96. Kaczmarek A, Gorb L, Sadlej AJ, Leszczynski J (2004) Sarin and Soman: Structure and Properties, Struct Chem 15: 517–525

    Article  CAS  Google Scholar 

  97. Paukku Y, Michalkova A, Majumdar D, Leszczynski J (2006) Investigation on the low energy conformational surface of tabun to probe the role of its different conformers on biological activity, Chem Phys Lett 422: 317–322

    Article  CAS  Google Scholar 

  98. Hegde RI, Greenlief CM, White JM (1985) Surface chemistry of dimethyl methylphosphonate on rhodium(100), J Phys Chem 89: 2886–2891

    Article  CAS  Google Scholar 

  99. Demonceau A, Noels AF, Hubert AJ (1988) Recent Aspects of Transition Metal Catalyzed Reactions of Carbenes in the Realm of Biologically Active Substances in Aspects Homogeneous Catalysis, edited by R. Ugo and D. Reibel, (Publ. Comp., Dordrecht), Vol. 6, pp. 199–232

    Google Scholar 

  100. Salomon RG, Kochi JK (1973) Copper(I) catalysis in cyclopropanations with diazo compounds. Role of olefin coordination, J Am Chem Soc 95: 3300–3310

    Article  CAS  Google Scholar 

  101. R. Paulissen, A. J. Hubert, and Ph. Teyssie (1972) Transition metal-catalyzed cyclopropanation of olefins, Tetrahedron Lett 15: 1465–1466

    Article  Google Scholar 

  102. A. J. Hubert, A. F. Noels, A. J. Anciaux, and Ph. Teyssie (1976) Rhodium(II) carboxylates: novel highly efficient catalysts for the cyclopropanation of alkenes with alkyl diazoacetates, Synthesis 9: 600–602

    Article  Google Scholar 

  103. V. S. Smentkowski, P. L. Hagans, and J. T. Yates (1988) Study of the catalytic destruction of dimethyl methylphosphonate(DMMP): oxidation over molybdenum(110), J. Phys. Chem 92: 6351–6357

    Article  CAS  Google Scholar 

  104. S. G. Ryu, J. K. Yang, H. W. Lee, and Y. S. Yang (1995) Decomposition of dimethyl methylphosphonate over alumina-supported precious metal catalysts, Journal of Korean Institute of Chemical Engineers 33: 462–470

    CAS  Google Scholar 

  105. W. M. Graven, S. W. Weller, and D. L. Peters (1966) Catalytic conversion of an organophosphate vapor over platinum-alumina, Ind. Eng. Chem. Process Des. Dev 5: 183–189 .

    Article  CAS  Google Scholar 

  106. R. W. Baier, and S. W. Weller (1967) Catalytic and thermal decomposition of sarin, Ind. Eng. Chem. Process Des. Dev 6: 380–385

    Article  CAS  Google Scholar 

  107. L. L. Hegedus, and K. Baron (1975) Effects of poisoning and sintering on the pore structure and diffusive behavior of platinum/alumina catalysts in automotive converters, Journal of Catalysis 37(1): 127–132

    Article  Google Scholar 

  108. B. Angele, and K. Kirchner (1980) The poisoning of noble metal catalysts by phosphorus compounds. I. Chemical processes, mechanisms, and changes in the catalyst, Chem. Eng. Sci 35: 2089–2091

    Article  CAS  Google Scholar 

  109. B. Angele, K. Kirchner, and E. G. Schlosser (1980) The poisoning of noble metal catalysts by phosphorus compounds. III. The deposition of catalyst poisons in honeycomb catalysts, Chem. Eng. Sci 35: 2101–2105

    Article  CAS  Google Scholar 

  110. B. Angele, and K. Kirchner (1980) The poisoning of noble metal catalysts by phosphorus compounds. II. The kinetics of poisoning and a mathematical model, Chem. Eng. Sci 35: 2903–2909

    Google Scholar 

  111. C. S. Dulcey, M. C. Lin, and C. C. Hsu (1985) Thermal desorption of the phosphoryl (PO) radical from polycrystalline platinum surfaces, Chem. Phys. Lett 115: 481–485

    Article  ADS  CAS  Google Scholar 

  112. A. Michalkova, D. Majumdar, and J. Leszczynski, Adsorption of sarin on platinum and palladium surfaces: An ab initio study, J. Phys. Chem.B 2006 (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Michalkova, A., Gorb, L., Leszczynski, J. (2007). A Quest for Efficient Methods of Disintegration of Organophosphorus Compounds: Modeling Adsorption and Decomposition Processes. In: Sokalski, W.A. (eds) Molecular Materials with Specific Interactions – Modeling and Design. Challenges and Advances in Computational Chemistry and Physics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5372-X_16

Download citation

Publish with us

Policies and ethics