Skip to main content

Electronic Properties and Fragmentation Dynamics of Organic Species Deposited on Silicon Surfaces

  • Chapter
Molecular Materials with Specific Interactions – Modeling and Design

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 4))

  • 1387 Accesses

Abstract

This contribution summarizes recent progress in the computational treatment of organic species deposited on silicon surfaces, with emphasis on the Si(100) surface. Representative theoretical studies of various organic species in contact with Si surfaces are surveyed, involving unsaturated hydrocarbons, amines, phosphines, and alcohols as adsorbates. The connection of the presented computational results to spectroscopic measurement is outlined in each individual case. The strengths and the limitations of a finite cluster model for simulating the Si substrate are discussed. Further, a comprehensive investigation of one specific system is presented, namely 1-propanol adsorbed on Si(001) -(2× 1). It is shown by density functional theory within periodic boundary conditions that 1-propanol in contact with Si(001) -(2× 1) initially occupies a metastable physisorbed state which turns into a stable chemisorbed ground state by dissociative hydrogen transfer. This fragmentation effect is confirmed by ab initio molecular dynamics at room temperature. The adsorbed organic layer induces further surface reconstruction. For the first time, the band structure of the 1-propanole/Si(001) film is determined. The tendency of the energy gap as a function of 1-propanole coverage indicates that the surface becomes increasingly insulating as the areal density of the organic adsorbate is enhanced

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mui C, Wang GT, Bent SF, Musgrave CB (2001) Reactions of methylamines at the Si(100)-(2× 1) surface, J. Chem. Phys. 114: 10170–10180

    Article  ADS  CAS  Google Scholar 

  2. Pike AR, Lie LH, Eagling RA, Ryder LC, Patole SN, Connolly BA, Horrocks BR, Houlton A (2002) DNA on silicon devices: On-chip synthsis, hybridization, and charge transfer, Angew. Chem. Int. Ed., 41: 615–617

    Article  CAS  Google Scholar 

  3. Konecny R, Doren DJ (1998) Cycloaddition reactions of unsaturated hydrocarbons on the Si(100)-(2× 1) surface: theoretical predictions, Surf. Sci. 417: 169–188

    Article  CAS  Google Scholar 

  4. Silvestrelli PL, Ancilotto F, Toigo F (2000) Adsorption of benzene on Si(100) from first principles, Phys. Rev. B 62: 1596–1599

    Article  ADS  CAS  Google Scholar 

  5. Silvestrelli PL (2004) Adsorption of ethanol on Si(100) from first principles calculations, Surf. Sci. 552:17–26

    Article  ADS  CAS  Google Scholar 

  6. Zhang L, Carman AJ, Casey SM (2003) Adsorption and thermal decomposition chemistry of 1-propanol and other primary alcohols on the Si(100) surface, J. Phys. Chem. B 107: 8424–8432

    Article  CAS  Google Scholar 

  7. Carman A, Zhang L, Liswood JL, Casey SM (2003) Methylamine Adsorption on and Desorption from Si(100), J. Phys. Chem. B 107: 5491–5502

    Article  CAS  Google Scholar 

  8. Waltenburg HN, Yates JT Jr (1995) Surface chemistry of silicon, Chem. Rev. 95: 1589–1673

    Article  CAS  Google Scholar 

  9. Fazleev NG, Fry JL, Weiss AH (2004) Surface states and annihilation characteristics of positrons trapped at the (100) and (111) surfaces of silicon, Phys. Rev. B 70: 165309/1–17

    Article  ADS  CAS  Google Scholar 

  10. Redondo A, Goddard WA III (1982) Electronic correlation and the silicon (100) surface: Buckling versus nonbuckling, J. Vac. Sci. Technol 21: 344–350, Paulus B (1998) Correlation calculations for the reconstruction of the Si(100) surface, Surf. Sci. 408: 195–202

    Google Scholar 

  11. Hamers RJ, Tromp RM, Demuth JE (1986) Scanning tunneling microscopy of silicon(001), Phys. Rev. B 34: 5343–5357

    Article  ADS  CAS  Google Scholar 

  12. Monch W (2001) Semiconductor surfaces and interfaces, pp. 219–220 (Third Edition, Springer)

    Google Scholar 

  13. Takayanagi K, Tanishiro Y, Takahashi S, Takahashi M (1985) Structure analysis of silicon(111)-7× 7 reconstructed surface by transmission electron diffraction, Surf. Sci. 164: 367–392

    Article  CAS  Google Scholar 

  14. Yates JT Jr (1991) Surface chemistry of silicon-the behaviour of dangling bonds, J. Phys.: Condens. Matter 3: S143–S156

    Article  ADS  CAS  Google Scholar 

  15. Bozack MJ, Taylor PA, Choyke WJ, Yates JT (1986) Chemical activity of the carbon-carbon double bond on silicon surfaces, Surf. Sci. 177: L933–L937

    Article  CAS  Google Scholar 

  16. Nishijima M, Yoshinobu J, Tsuda H, Onchi M (1987) The adsorption and thermal decomposition of acetylene on silicon(100) and vicinal silicon(100) 0ˆ, Surf. Sci. 192: 383–397

    Article  CAS  Google Scholar 

  17. Yoshinobu J, Tsuda H, Onchi M, Nishijima M (1987) The adsorbed states of ethylene on silicon(100)c(4× 2), silicon(100)(2× 1), and vicinal silicon(100) 9ˆ: electron energy loss spectroscopy and low-energy electron diffraction studies, J. Chem. Phys. 87: 7332–7340

    Article  ADS  CAS  Google Scholar 

  18. Taylor PA, Wallace RM, Cheng CC, Weinberg WH, Dresser MJ, Choyke WJ, Yates JT Jr (1992) Adsorption and decomposition of acetylene on silicon(100)-(2× 1), J. Am. Chem. Soc. 114: 6754–6760

    Article  CAS  Google Scholar 

  19. Clemen L, Wallace RM, Taylor PA, Dresser MJ, Cheng CC, Choyke WJ, Weinberg WH, Yates JT Jr (1992) Adsorption and thermal behavior of ethylene on silicon(100)-(2× 1), Surf. Sci. 268: 205–216

    Article  CAS  Google Scholar 

  20. Huang C, Widdra W, Weinberg WH (1994) Adsorption of ethylene on the Si(100)-(2× 1) surface, Surf. Sci. 315: L953–L958

    Article  CAS  Google Scholar 

  21. Fisher AJ, Bloechl PE, Briggs GAD (1997) Hydrocarbon adsorption on Si(001): when does the Si dimer bond break?, Surf. Sci. 374: 298–305

    Article  CAS  Google Scholar 

  22. Pan W, Zhu T, Yang W (1997) First-principles study of the structural and electronic properties of ethylene adsorption on Si(100)-(2× 1) surface, J. Chem. Phys. 107: 3981–3985

    Article  ADS  CAS  Google Scholar 

  23. Hovis JS, Liu H, Hamers RJ (1998) Cycloaddition Chemistry of 1,3-Dienes on the Silicon(001) Surface: Competition between [4+2] and [2+2] Reactions, J. Phys. Chem. B 102: 6873–6879

    Article  CAS  Google Scholar 

  24. Tepljakov AV, Kong MJ, Bent SF (1997) Vibrational Spectroscopic Studies of Diels-Alder Reactions with the Si(100)-2× 1 Surface as a Dienophile, J. Am. Chem. Soc. 119: 11100–11101; Tepljakov AV, Kong MJ, Bent SF (1998) Diels-Alder reactions of butadienes with the Si(100)-2× 1 surface as a dienophile: Vibrational spectroscopy, thermal desorption and near edge x-ray absorption fine structure studies, J. Chem. Phys. 108: 4599–4606

    Google Scholar 

  25. Konecny R, Doren DJ (1997) Theoretical Prediction of a Facile Diels-Alder Reaction on the Si(100)-2× 1 Surface, J. Am. Chem. Soc. 119: 11098–11099

    Article  CAS  Google Scholar 

  26. Choi CH, Gordon MS (1999) Cycloaddition Reactions of 1, 3-Cyclohexadiene on the Silicon(001) Surface, J. Am. Chem. Soc. 121: 11311–11317

    Article  CAS  Google Scholar 

  27. Shoemaker JR, Burggraf LW, Gordon MS (1999) SIMOMM: an integrated molecular orbital/molecular mechanics optimization scheme for surfaces, J. Phys. Chem. A 103: 3245–3251

    Article  CAS  Google Scholar 

  28. Gokhale S, Trischberger P, Menzel D, Widdra W, Droege H, Steinrueck H-P, Birkenheuer U, Gutdeutsch U, Roesch N (1998) Electronic structure of benzene adsorbed on single-domain Si(001)-(2× 1): A combined experimental and theoretical study, J. Chem. Phys 108: 5554–5564; Birkenheuer U, Gutdeutsch U, Roesch N (1998) Geometrical structure of benzene absorbed on Si(001), Surf. Sci. 409: 213–228

    Google Scholar 

  29. Self KW, Pelzel RI, Owen JHG, Yan C, Widdra W, Weinberg WH (1998) Scanning tunneling microscopy study of benzene adsorption on Si(100)-(2× 1), J. Vac. Sci. Technol A 16: 1031–1036

    Article  ADS  CAS  Google Scholar 

  30. Kong MJ, Teplyakow AV, Lyubovitsky JG, Bent SF (1998) NEXAFS studies of adsorption of benzene on Si(100)-2× 1, Surf. Sci. 411: 286–293

    Article  CAS  Google Scholar 

  31. Borovsky B, Krueger M, Ganz E (1998) Metastable adsorption of benzene on the Si(001) surface, Phys. Rev. B 57, R4269–R4272

    Article  ADS  CAS  Google Scholar 

  32. Lopinski GP, Moffat DJ, Wolkow RA (1998) Benzene/Si(100): metastable chemisorption and binding state conversion, Chem Phys Lett 282: 305–312; Lopinski GP, Fortier TM, Moffatt DJ, Wolkow RA, (1998) Multiple bonding geometries and binding state conversion of benzene/Si(100), J. Vac. Sci. Technol. A 16: 1037–1042; Wollow RA, Lopinski GP, Wolkow DJ, Moffat DJ (1998) Resolving organic molecule-silicon scanning tunneling microscopy features with molecular orbital methods, Surf. Sci. 416: L1107–L1113

    Google Scholar 

  33. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55: 2471–2474

    Article  PubMed  ADS  CAS  Google Scholar 

  34. Cao X, Hamers RJ (2001) Silicon Surfaces as Electron Acceptors: Dative Bonding of Amines with Si(001) and Si(111) Surfaces J. Am. Chem. Soc 123: 10988–10996

    Article  PubMed  CAS  Google Scholar 

  35. Cao X, Hamers RJ (2002) Interactions of alkylamines with the silicon (001) surface, J. Vac. Sci. Tech. B 20, 1614–1619

    Article  CAS  Google Scholar 

  36. Mui C, Han JH, Wang GT, Musgrave CB, Bent SF (2002) Proton Transfer Reactions on Semiconductor Surfaces, J. Am. Chem. Soc 124: 4027–4038

    Article  PubMed  CAS  Google Scholar 

  37. Carman A, Zhang L, Liswood JL, Casey SM (2003) Methylamine Adsorption on and Desorption from Si(100), J. Phys. Chem. B 107: 5491–5502

    Article  CAS  Google Scholar 

  38. Björkvist M, Göthelid M, Grekh TM, Karlsson UO (1998) NH3 on Si(111)7× 7: Dissociation and surface reactions, Phys. Rev. B 57: 2327–2333

    Article  ADS  Google Scholar 

  39. Wolkow R, Avouris P (1988) Atom-resolved surface chemistry using scanning tunneling microscopy, Phys. Rev. Lett 60: 1049–1052

    Article  PubMed  ADS  CAS  Google Scholar 

  40. Yu ML, Meyerson BS (1984) The adsorption of phosphine on silicon(100) and its effect on the coadsorption of silane, J. Vac. Sci. Technol. A 2: 446–449

    Article  ADS  CAS  Google Scholar 

  41. Wang Y, Chen X, Hamers RJ (1994) Atomic-resolution study of overlayer formation and interfacial mixing in the interaction of phosphorus with Si(001), Phys. Rev. B 50: 4534–4547

    Article  ADS  CAS  Google Scholar 

  42. Colaianni ML, Chen PJ, Yates JT, Jr (1994) Unique hydride chemistry on silicon-PH3 interaction with Si(100)-(2× 1), Vac. Sci. Technol. A 12: 2995–2998

    Article  ADS  CAS  Google Scholar 

  43. Yu ML, Vitkavage DJ, Meyerson BS (1986) Doping reaction of PH3 and B2H6 with Si(001), J. Appl. Phys 59: 4032–4038

    Article  ADS  CAS  Google Scholar 

  44. Kipp L, Bringans RD, Biegelsen DK, Northrup JE, Garcia A, Swartz LE (1995) Phosphine adsorption and decomposition on Si(100) 2× 1 studied by STM, Phys. Rev. B 52: 5843–5850

    Article  ADS  CAS  Google Scholar 

  45. Hirose R, Sakamoto H (1999) Thermal desorption of surface phosphorus on Si(100) surfaces, Surf. Sci. Lett 430: L540–545

    Article  CAS  Google Scholar 

  46. Maity N, Xia LQ, Engstrom JR (1995) Effect of PH3 on the dissociative chemisorption of SiH4 and Si2H6 on.Si(100): Implications on the growth on in situ doped Si thin films, Appl Phys Lett 66: 1909–1912

    Article  ADS  CAS  Google Scholar 

  47. Yoo DS, Suemitsu M, Miyamoto N (1995) Hydrogen desorption process of Si(100)/PH3, J. Appl. Phys. 78: 4988

    Article  ADS  CAS  Google Scholar 

  48. Wang Y, Bronikowski MJ, Hamers RJ (1994) An Atomically Resolved STM Study of the Interaction of Phosphine with the Silicon(001) Surface, J. Phys. Chem. 98: 5966–5973

    Article  CAS  Google Scholar 

  49. Lin DS, Ku TS, Sheu TJ (1999) Thermal reactions of phosphine with Si(100): a combined photoemission and scanning-tunneling-microscopy study, Surf. Sci. 424: 7–18

    Article  CAS  Google Scholar 

  50. Lin DS, Ku TS, Chen RP (2000) Interaction of phosphine with Si(100) from core-level photoemission and real-time scanning tunneling microscopy, Phys. Rev. B 61: 2799–2805

    Article  ADS  CAS  Google Scholar 

  51. Shan J, Wang Y, Hamers RJ (1996) Adsorption and Dissociation of Phosphine on Si(001), J. Phys. Chem. 100: 4961–4969

    Article  CAS  Google Scholar 

  52. Chen PJ, Colaianni ML, Wallace RM, Yates JT Jr (1991) Dissociative adsorption of PH3 on Si(111)-(7× 7): a high resolution electron energy loss spectroscopy study Surf. Sci. 244: 177–184

    Article  CAS  Google Scholar 

  53. Bozso F, Avouris PH (1991) Adsorption of phosphorus on Si(111): Structure and chemical reactivity, Phys. Rev. B 43: 1847–1850

    Article  ADS  CAS  Google Scholar 

  54. Cao PL, Lee LQ, Dai JJ, Zhou RH (1994) Adsorption and dissociation of PH3 on Si(100))2× 1 and Si(111)7× 7: Theoretical study, J. Phys: Condens Matter 6: 6103–6111

    Article  ADS  CAS  Google Scholar 

  55. Miotto R, Srivastava GP, Miwa RH, Ferraz AC (2001) A comparative study of dissociative adsorption of NH3, PH3, and AsH3 on Si(001)-(2× 1), J. Chem. Phys. 114: 9549–9556

    Article  ADS  CAS  Google Scholar 

  56. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98: 5648–5652

    Article  ADS  CAS  Google Scholar 

  57. Bockstedte M, Kley A, Neugebaur J, Scheffler M (1997) Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics, Comput Phys. Commun. 107: 187–222

    Article  MATH  ADS  CAS  Google Scholar 

  58. Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77: 3865–3868

    Article  PubMed  ADS  CAS  Google Scholar 

  59. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43: 1993–2006

    Article  ADS  CAS  Google Scholar 

  60. Eng J, Raghavachari K, Struck LM, Chabal YJ, Bent BE, Flynn GW, Christman SB, Chaban EE, Williams GP, Radermacher K, Mantl S (1997) A vibrational study of ethanol adsorption on Si(100), J Chem Phys 106: 9889–9898; Casaletto MP, Zanoni R, Carbone M, Piancastelli MN, Aballe L, Weiss K, Horn K (2000) High-resolution photoemission study of ethanol on Si(100)2× 1, Surf. Sci. 447: 237–244

    Google Scholar 

  61. Casaletto MP, Zanoni R, Carbone M, Piancastelli MN, Aballe L, Weiss K, Horn K (2002) Methanol adsorption on Si(100)2× 1 investigated by high-resolution photoemis, Surf. Sci. 505: 251–259

    Article  CAS  Google Scholar 

  62. Lu X, Zhang Q, Lin MC (2001) Adsorptions of Methanol, Formaldehyde and Formic Acid on the Si(100)-2× 1 Surface: A Theoretical Study, Phys. Chem. Chem. Phys. 3: 2156–2166

    Article  CAS  Google Scholar 

  63. Kato T, Kang SY, Xu X, Yamabe T (2001) Possible Dissociative Adsorption of CH3OH and CH3NH2 on Si(100)-2× 1 Surface, J. Phys. Chem. B 105: 10340–10347

    Article  CAS  Google Scholar 

  64. Maseras F, Morokuma K (1995) A New Ab Initio + Molecular Mechanics Geometry Optimization Scheme of Equilibrium Structures and Transition States, J. Comput. Chem. 16: 1170–1179

    Article  CAS  Google Scholar 

  65. Kresse G, Furthmueller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54: 11169–11186

    Article  ADS  CAS  Google Scholar 

  66. Perdew JP, Wang Y (1992) Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46: 6671–6687

    Article  ADS  CAS  Google Scholar 

  67. Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59: 1758

    Article  ADS  CAS  Google Scholar 

  68. Blöchl PE (1994) Projector augmented-wave method, Phys. Rev. B 50: 17953–17979

    Article  ADS  Google Scholar 

  69. Monkhorst HJ Pack JD (1976) Special points for Brillouin-zone integrations, Phys. Rev. B 13: 5188–5192

    Article  ADS  MathSciNet  Google Scholar 

  70. Ciani A, Sen P, Batra I (2004) Initial growth of Ba on Si(001), Phys. Rev. B 69: 245308–245319

    Article  ADS  CAS  Google Scholar 

  71. Sen P, Ciraci S, Batra I, Grein C, Sivannthan S (2002) Finite temperature studies of Te adsorption on Si(001), Surf. Sci. 519: 79–89

    Article  CAS  Google Scholar 

  72. Henkelman G, Uberuaga B, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113: 9901–9904

    Article  ADS  CAS  Google Scholar 

  73. Jonsson H, Mills G, Jacobsen KW Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, ed. Berne BJ, Ciccotti G and Coker DF, 385–405 (World Scientific, 1998)

    Google Scholar 

  74. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81: 511–519

    Article  ADS  Google Scholar 

  75. Over H, Wasserfall J, Ranke W, Ambiatello C, Sawitzki R, Wolf D, Moritz W (1997) Surface atomic geometry of Si(001)-(2× 1): A low-energy electron-diffraction structure analysis Phys. Rev. B 55: 4731–4736

    Article  ADS  CAS  Google Scholar 

  76. Ramstad A, Brocks G, Kelly P (1995) Theoretical study of the Si(100) surface reconstruction, Phys. Rev. B 51: 14504–14523

    Article  ADS  CAS  Google Scholar 

  77. Miotto R, Oliveira M, Pinto M, de Leon-Perez F, Ferraz A (2004) Acetonitrile adsorption on Si(001), Phys. 31–2353 Rev. B 69: 235340

    Google Scholar 

  78. see12, p.18

    Google Scholar 

  79. Ogitsu T, Schwegler E, Gygi F, Galli G (2003) Melting of Lithium Hydride under Pressure, Phys. Rev. Lett. 91: 175502–175506

    Article  PubMed  ADS  CAS  Google Scholar 

  80. Lu Z, Wang C, Ho K-M (2000) Structures and dynamical properties of Cn, Sin, Gen, and Snn clusters with n up to 13, Phys. Rev. B 61: 2329–2334

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Zhou, JG., Hagelberg, F. (2007). Electronic Properties and Fragmentation Dynamics of Organic Species Deposited on Silicon Surfaces. In: Sokalski, W.A. (eds) Molecular Materials with Specific Interactions – Modeling and Design. Challenges and Advances in Computational Chemistry and Physics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5372-X_14

Download citation

Publish with us

Policies and ethics