Skip to main content

Sludge reduction by predatory activity of aquatic oligochaetes in wastewater treatment plants: science or fiction? A review

  • Chapter
Aquatic Oligochaete Biology IX

Part of the book series: Developments in Hydrobiology ((DIHY,volume 186))

Abstract

Biological aerobic wastewater treatment plants (WWTPs) produce a lot of excess sludge. The costs for handling this residual product are increasing, so the search for alternative techniques to reduce the amount of sludge has to be continued. Activated sludge consists of inorganic and organic substances, bacteria, protozoa and metazoa. Due to incomplete biomass conversion, sludge consumption yields less oligochaete biomass. From a technological point of view, the application of aquatic oligochaetes to reduce the sludge production offers interesting perspectives. This paper aims to review the feasibility for the reduction of activated sludge in WWTPs by means of aquatic oligochaetes. Also the current techniques concerning sludge reduction are taken into account. Several of the WWTPs relevant parameters, which may influence predatory activity of aquatic oligochaetes, are discussed: particle size, organic content of substrate, bacteria preference, life cycle and population dynamics of aquatic oligochaetes, temperature, pH, oxygen and process conditions. From the literature it appeared that most research has been performed on laboratory scale. Only a few authors mention a significant reduction of the sludge production by ‘sessile’ species such as Lumbriculus. Vermicultures for the reduction of activated sludge are rather common in developing countries. Incidentally large annelid blooms have been noticed in WWTPs. It remains obscure which factors trigger the initiation of annelid blooms inWWTPs and which are of importance to maintain a stable annelid population in WWTPs. The influence of a considerable worm bloom on the waste sludge production is still under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbassi, B., S. Dullstein & N. Räbiger, 1999. Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs; experimental and theoretical approach. Water Research 34: 139–146, SRA II.

    Article  Google Scholar 

  • Adreani, L., C. Bonacina, G. Bonomi & C. Monti, 1984. Cohort cultures of Psammoryctides barbatus (Grube) and Spirosperma ferox Eisen: a tool for a better understanding of demographic strategies in Tubificidae. Hydrobiologia 115: 113–119.

    Article  Google Scholar 

  • Aston, R. J., 1968. The effect of temperature on the life cycle, growth and fecundity of Branchiua sowerbyi (Oligochaeta: Tubificidae). Journal of Zoology 154: 29–40.

    Article  Google Scholar 

  • Aston, R. J. & A. G. P. Milner, 1982. Conditions required for the culture of Branchiura sowerbyi (Oligochaeta: Tubificidae) in activated sludge. Aquaculture 26: 155–160.

    Article  Google Scholar 

  • Aston, R. J., K. Sadler & A. G. P. Milner, 1982. The effects of temperature on the culture of Branchiura sowerbyi (Oligochaeta, Tubificidae) on activated sludge. Aquaculture 29: 137–145.

    Article  Google Scholar 

  • Athanasopouluos, N., 1993. Use of earthworm biotechnology for the management of anaerobically stabilized effluents of dried vine fruit industry. Biotechnology letters 15: 1281–1286.

    Google Scholar 

  • Bonacina, C., G. Bonomi & C. Monti, 1989a. Population analysis in mass cultures of Tubifex tubifex. Hydrobiologia 180: 127–134.

    Article  Google Scholar 

  • Bonacina, C., G. Bonomi & C. Monti, 1989b. Density-dependent processes in cohorts of Tubifex tubifex, with special emphasis on the control of fecundity. Hydrobiologia 180: 135–141.

    Article  Google Scholar 

  • Bouguenec, V., 1992. Oligochaetes (Tubificidae and Enchytraeidae) as food in fish rearing: a review and preliminary tests. Aquaculture 102: 201–217.

    Article  Google Scholar 

  • Bowker, D. W., M. T. Wareham & M. A. Learner, 1983. The selection and ingestion of epilithic algae by Nais elinguis (Oligochaeta: Naididae). Hydrobiologia 98: 171–178.

    Article  Google Scholar 

  • Bowker, D. W., M. T. Wareham & M. A. Learner, 1985a. A choice chamber experiment on the selection of algae as food and substrate by (Oligochaeta: Naididae). Freshwater Biology 15: 547–557.

    Article  Google Scholar 

  • Bowker, D. W., M. T. Wareham & M. A. Learner, 1985b. The ingestion and assimilation of algae by Nais elinguis (Oligochaeta: Naididae). Oecologia 67: 282–285.

    Article  Google Scholar 

  • Brinkhurst, R. O. & K. E. Chua, 1969. Preliminary investigation of the exploitation of some potential nutritional resources by three sympatric tubificid oligochaetes. Journal Fisheries Research Board of Canada 26: 2659–2668.

    Google Scholar 

  • Brinkhurst, R. O., 1970. Distribution and abundance of tubificid (Oligochaeta) species in Toronto Harbour, Lake Ontario. Journal Fisheries Research Board of Canada 27: 1961–1969.

    Google Scholar 

  • Brinkhurst, R. O. & B. G. M. Jamieson (eds), 1971. Distribution and Ecology. From: Aquatic Oligochaeta of the World. Edinburgh, Oliver and Boyd, 122–147.

    Google Scholar 

  • Brinkhurst, R. O., K. E. Chua & N. K. Kaushik, 1972. Interspecific interactions and selective feeding by tubificid oligochaetes. Limnology and Oceanography 17: 122–133.

    Google Scholar 

  • Brinkhurst, R. O., 1974. Factors mediating interspecific aggregation of tubificid oligochaetes. Journal Fisheries Research Board of Canada 31: 460–462.

    Google Scholar 

  • Brinkhurst, R. O. & M. J. Austin, 1979. Assimilation by aquatic Oligochaeta. International Review of Hydrobiology 64: 245–250.

    Google Scholar 

  • Cammen, L. M., 1982. Effect of particle size on organic content and microbial abundance within four marine sediments. Marine Ecology-Progress Series 9: 273–280.

    Google Scholar 

  • Christensen, B., 1973. Density dependence of sexual reproduction in Enchytraeus bigeminus (Enchytraeidae). Oikos 24: 287–294.

    Article  Google Scholar 

  • Christensen, B., 1984. Asexual propagation and reproductive strategies in aquatic Oligochaeta. Hydrobiologia 115: 91–95.

    Article  Google Scholar 

  • Clark, P., 1997. Vermistabilisation as a viable rural works treatment technology. Technical report.

    Google Scholar 

  • Cole, L., R. D. Bardgett & P. Ineson, 2000. Enchytraeid worms (Oligochaeta) enhance mineralization of carbon in organic upland soils. European Journal of Soil Science 51: 185–192.

    Article  Google Scholar 

  • Coler, R. A., H. B. Gunner & B. M. Zuckermann, 1968. Selective feeding of tubificids on bacteria. Nature 216: 1143–1144.

    Article  Google Scholar 

  • Cummins, K. W. & G. H. Lauff, 1968. The influence of substrate particle size on the microdistribution of stream benthos. Hydrobiologia 34: 145–181.

    Article  Google Scholar 

  • Dumnicka, E. & K. Pasternak, 1978. The influence of physicochemical properties of water and bottom sediments in the River Nida on the distribution and numbers of Oligochaeta. Acta Hydrobiologica 20: 215–232.

    CAS  Google Scholar 

  • EC, 1991. Commission of European Communities, Survey of Sludge Production, Treatment, Quality and disposal in European Union, Report EC 3646.

    Google Scholar 

  • Elvira, C., M. Goicoechea, L. Sampedro, S. Mato & R. Nogales, 1996. Bioconversion of solid paper-pulp mill sludge by earthworms. Bioresource Technology 57: 173–177.

    Article  CAS  Google Scholar 

  • Famme, P. & K. Knudsent, 1985. Anoxic survival, growth and reproduction by the freshwater annelid, Tubifex sp., demonstrated using a new simple anoxic chemostat. Comparative Biochemistry and Physiology 81A: 251–253.

    Google Scholar 

  • Finogenova, N. P. & T. M. Lobasheva, 1987. Growth of Tubifex tubifex Mueller (Oligochaeta, Tubificidae) under various trophic conditions. International Review of Hydrobiology 72: 709–726.

    Google Scholar 

  • Hämmerling, J., 1924. Die ungeschlechtliche Fortplanzung und Regeneration bei Aeolosoma hemprichi. Zoologische Jahrbucher-Abteilung für Allgemeine Zoologie und Physiologie der Tiere 41: 581–656.

    Google Scholar 

  • Harper, R. M., J. C. Fry & M. A. Learner, 1981a. A bacteriological investigation to elucidate the feeding biology of Nais variabilis (Oligochaeta: Naididae). Freshwater Biology 11: 227–236.

    Article  Google Scholar 

  • Harper, R. M., J. C. Fry & M. A. Learner, 1981b. Digestion of bacteria by Nais variabilis (Oligochaeta) as established by autoradiography. Oikos 36: 211–218.

    Article  CAS  Google Scholar 

  • Hargrave, B. T., 1976. The central role of invertebrate feces in sediment decomposition. In Anderson, J. M. & A. Macfadyen (eds), The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell, Oxford: 301–321. 17th Symposium on British Ecology Society.

    Google Scholar 

  • Hartenstein, R., D. L. Kaplan & E.F. Neuhauser, 1984. Earthworms and trickling filters. Journal Water Pollution Control Federation 56: 294–298.

    CAS  Google Scholar 

  • Hawkes, H. A., 1963. The Ecology of Wastewater Treatment. Permagon Press, London.

    Google Scholar 

  • Inakollu, S. V. & A. Wanganeo, 2002. Environmental assessment of fishes grown in treated domestic sewage. Journal of Environmental Systems 29: 55–70.

    Article  Google Scholar 

  • Inamori, Y., R. Suzuki & R. Sudo, 1983. Mass culture of small aquatic oligochaeta. Research Report from the National Institute for Environmental Studies 47: 125–137 (in Japanese).

    Google Scholar 

  • Inamori, Y., Y. Kuniyasu & R. Sudo, 1987. Role of smaller metazoa in water purification and sludge reduction. Japanese Journal of Water Treatment Biology 23: 15–23 (in Japanese).

    Google Scholar 

  • Inamori, Y., Y. Kuniyasu, N. Hayashi, H. Ohtake & R. Sudo, 1990. Monoxenic and mixed cultures of the small metazoa Philodina erythrophthalma and Aeolosoma hemprichi isolated from a waste-water treatment process. Applied Microbial Biotechnology 34: 404–407.

    CAS  Google Scholar 

  • Janssen, P. M. J., W. H. Rulkens, J. H. Rensink, & H. F. van der Roest, 1998. The potential for metazoa in biological wastewater treatment. Water Quality International: 25–27.

    Google Scholar 

  • Juget, J., 1979. La texture granulometrique des sediments et le regime alimentaire des oligochè tes limnicoles. Hydrobiologia 65: 145–154.

    Article  Google Scholar 

  • Juget, J., V. Goubier & D. Barthélémy, 1989. Intrinsic and extrinsic variables controlling the productivity of asexual populations of Nais spp. (Naididae, Oligochaeta). Hydrobiologia 180: 177–184.

    Article  Google Scholar 

  • Juniper, S. K., 1981. Stimulation of bacterial activity by a deposit feeder in two New Zealand intertidal inlets. Bulletin of Marine Science 31: 691–701.

    Google Scholar 

  • Kaplan, D. L., R. Hartenstein & E. F. Newhauser, 1980. Coprophagic relations among the earthworms Eisena foetida, Eudrilus eugenia and Amynthae spp. Pedobiologia 20: 74–84.

    Google Scholar 

  • Kirk, R. G., 1973. Growth of sole (Solea solea L.) on Enchytraeid womrd diets. International Council of Exploration of the sea. Fisheries Improvement Committee C. M. 197/E: 18.

    Google Scholar 

  • Kirk, R. G. & B. R. Howell, 1972. Growth rates and food conversion in young plaice fed on artificial diets. Aquaculture 1: 29–34.

    Article  Google Scholar 

  • Klapwijk, A., V. Blom, C. H. Ratsak, B. R. Buijs & H. E. H. Elissen, 2000. Reduction of sludge production in an activated sludge system with the use of metazoa and other higher organisms. CREST Workshop on Integrated Water Quality Management-The 4th Japan-Netherlands Workshop, Hokkaido Kiroro Resort, Japan, 2000: 369–375.

    Google Scholar 

  • Koot, A. C. J., 1980. Behandeling van afvalwater. Uitgeverij Waltman. Delft. ISBN 90 212 3172 7.

    Google Scholar 

  • Kuniyasu, K., N. Hayashi, Y. Inamori & R. Sudo, 1997. Effect of environmental factors on growth characteristics of oligochaeta. Japanese Journal of Water Treatment Biology 33: 207–214 (in Japanese).

    Google Scholar 

  • Learner, M. A., 1972. Laboratory studies on the life histories of four enchytraeid worms (Oligochaeta) which inhabit sewage percolating filters. Annals of Applied Biology 70: 251–266.

    Google Scholar 

  • Lee, N. M., 1996. Parameters affecting microorganisms and the process performance in biological wastewater treatment. Doctoral dissertation. Department of biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Sweden.

    Google Scholar 

  • Lochhead, G. & M. A. Learner, 1983. The effect of temperature on asexual population growth of three species of Naididae (Oligochaeta). Hydrobiologia 98: 107–112.

    Article  Google Scholar 

  • Loden, M. S., 1981. Reproductive ecology of Naididae (Oligochaeta). Hydrobiologia 83: 115–123.

    Article  Google Scholar 

  • van Loosdrecht, M. C. M. & M. Henze, 1999. Maintenance, endogenous respiration, lysis, decay and predation. Water Science and Technology 39: 107–117.

    Article  Google Scholar 

  • Lopez, G. R. & J. S. Levinton, 1987. Ecology of deposit feeding animals in marine sediments. Quarterly Review of Biology 62: 235–260.

    Article  Google Scholar 

  • Lotzof, M, 1999. The wonder of worms for sludge stabilisation. Journal Australian Water and Wastewater Association 26: 38–42 SRM II.

    CAS  Google Scholar 

  • Matisoff, G., X. S. Wang & P. L. McCall, 1999. Biological redistribution of lake sediments by tubificid oligochaetes: Branchiura sowerbyi and Limnodrilus hoffmeisteri/TubifexŜtubifex. Journal of Great Lakes Research 25: 205–219.

    Article  Google Scholar 

  • Mayhew, M. & T. Stephenson, 1997. Low biomass yield activated sludge: a review. Environmental Technology 18: 883–892.

    Article  CAS  Google Scholar 

  • Mermillod-Blondin, F., M. Creuzé des ChŜâtelliers & M. Gérino, 2003. Effects of the interaction between tubificid worms on the functioning of hyporheic sediments: an experimental study in sediment columns. Archiv für Hydrobiology 156: 203–223.

    Article  Google Scholar 

  • Milbrink, G., 1987. Mutualistic relationships between cohabiting tubificid species. Hydrobiologia 155: 193.

    Article  Google Scholar 

  • Milbrink, G., 1993. Evidence for mutualistic interactions in freshwater oligochaete communities. Oikos 68: 317–322.

    Article  Google Scholar 

  • McMurtry, M. J., D. J. Rapport & K. E. Chua, 1983. Substrate selection by tubificid oligochaetes. Canadian Journal of Fisheries and Aquatic Sciences 40: 1639–1646.

    Google Scholar 

  • Ŝdegaard, H., 2003. Sludge minimization technologies-an overview, 2003. Proceedings of the International Water Association Specialist Conference. Biosolids 2003. Wastewater Sludge as a Resource, 23–25 June, 2003. Norwegian University of Science and Technology, Trondheim, Norway.

    Google Scholar 

  • Pasteris, A., C. Bonacina & G. Bonomi, 1994. Observations on cohorts of Tubifex tubifex cultured at different food levels, using cellulose substrate. Hydrobiologia 278: 315–320.

    Article  Google Scholar 

  • Ratsak, C. H., S. A. L. M. Kooijman & B. W. Kooi, 1993. Modelling the growth of an oligochaete on activated sludge. Water Research 27: 737–749.

    Article  Google Scholar 

  • Ratsak, C. H., 1994, Grazer induced sludge reduction in wastewater treatment. Thesis, Vrije Universiteit Amsterdam.

    Google Scholar 

  • Ratsak, C. H., 2001. Effects of Nais elinguis on the performance of an activated sludge plant. Hydrobiologia 463: 217–222.

    Article  Google Scholar 

  • Rensink, J. H. & W. H. Rulkens, 1997. Using metazoa to reduce sludge production. Water Science and Technology 36: 171–179.

    Article  CAS  Google Scholar 

  • Reynoldson, T. B., 1987. The role of environmental factors in the ecology of tubificid oligochaetes-an experimental study. Holarctic Ecology 10: 241–248.

    Google Scholar 

  • Reynoldson, T. B., P. Rodriguez & M. A. Martinez Madrid, 1996. Comparison of reproduction, growth and acute toxicity in two populations of Tubifex tubifex (Müller, 1774) from the North America Great Lakes and northern Spain. Hydrobiologia 334: 199–206.

    Article  Google Scholar 

  • Robbins, J. A., P. L. McCall, J. B. Fisher & J. R. Krezoski, 1979. Effects of deposit-feeders on migration of 137Cs in lake sediments. Earth Planet Science Letters 42: 277–287.

    Article  CAS  Google Scholar 

  • Robbins, J. A., T. J. Keilty, D. S. White & D. N. Edgington, 1989. Relationships among tubificid abundances, sediment composition, and accumulation rates at Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 46: 223–231.

    Article  Google Scholar 

  • Rodriquez, P., M. Martinez-Madrid, J. A. Arrate & E. Navarro, 2001. Selective feeding by the oligochaete Tubifex tubifex (Tubificidae, Clitellata). Hydrobiologia 463: 133–140.

    Article  Google Scholar 

  • Saabye, A. & H.-G. Schwinning, 1994. Treatment and beneficial use of sewage sludge in the European Union. ISWA Times 3: 1–6.

    Google Scholar 

  • Sauter, G. & H. Güde, 1996. Influence of grain size on the distribution of tubificid oligochaete species. Hydrobiologia 334: 97–101.

    Article  Google Scholar 

  • Timm, T., 1984. Potential age of aquatic Oligochaeta. Hydrobiologia 115: 101–104.

    Article  Google Scholar 

  • Vigueros, L. C. & E. R. Camperos, 2002. Vermicomposting of sewage sludge: a new technology for Mexico. Water Science and Technology 46: 153–158.

    PubMed  Google Scholar 

  • Wachs, B., 1967. Die Oligochaeten-Fauna der Fliessgewässer unter besonderer Berücksichtigung der Beziehungen zwischen der Tubificiden-Besiedlung und dem Substrat. Archiv für Hydrobiology 63: 310–386.

    Google Scholar 

  • Wavre, M. & R. O. Brinkhurst, 1971. Interactions between some tubificid oligochaetes and bacteria found in the sediments of Toronto Harbour, Ontario. Journal Fisheries Research Board of Canada 28: 335–341.

    Google Scholar 

  • Wei, Y., R. T. van Houten, A. R. Borger, D. H. Eikelboom & Y. B. Fan, 2003. Comparison performances of membrane bioreactor and conventional activated sludge processes on sludge reduction induced by oligochaete. Environmental Science and Technology 37: 3171–3180.

    Article  PubMed  CAS  Google Scholar 

  • Wei, Y., R. T. van Houten, A. R. Borger, D. H. Eikelboom & Y. B. Fan, 2003. Minimization of excess sludge production for biological wastewater treatment. Water Research 37: 4453–4467.

    Article  PubMed  CAS  Google Scholar 

  • WIRES, 2004. EU Project ID nr EVK1-CT-2000-00050. Ways of innovation for the reduction of excess sludge.

    Google Scholar 

  • Zahner, R., 1967. Refinement in empirical functions for realistic soil-moisture regimes under forest cover. In Sopper, W. E. & H. W. Lull (eds), Forest Hydrology. Pergamon Press, New York, NY, 261–272.

    Google Scholar 

  • Zhang, B. & K. Yamamoto, 1997. The role of predators on sludge mineralization in membrane separation bioreactor. Thesis Zhang, Boran (Prof. Yamamoto): A Study on Microbial Activities and The Role of Predators in Membrane Separation Activated Sludge Process. Dept. of Urban Engineering, the University of Tokyo.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Ratsak, C.H., Verkuijlen, J. (2006). Sludge reduction by predatory activity of aquatic oligochaetes in wastewater treatment plants: science or fiction? A review. In: Verdonschot, P.F.M., Wang, H., Pinder, A., Nijboer, R. (eds) Aquatic Oligochaete Biology IX. Developments in Hydrobiology, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5368-1_18

Download citation

Publish with us

Policies and ethics