Modelling recolonisation of heterogeneous river floodplains by small mammals

  • S. Wijnhoven
  • A. J. M. Smits
  • G. van der Velde
  • R. S. E. W. Leuven
Part of the Developments in Hydrobiology book series (DIHY, volume 187)


Riverine landscapes are characterised by recurrent flooding events and successional landscape mosaics with high habitat heterogeneity, providing species-specific patterns of suitable and unsuitable biotopes. Landscape characteristics, like distance, barriers and their specifications (e.g. cumulative barrier width, barrier number) and the spatial arrangement of suitable habitat areas, are expected to affect the dispersal of animals in landscapes. The distribution of voles, shrews and mice in a floodplain was monitored for 2 years using live traps. Recolonisation was found to be a slow process, resulting in a heterogeneous distribution of small mammals in the floodplains. Microtus arvalis was found just after the floods in low densities and on or near non-flooded areas only. From summer to autumn densities gradually increased, and specimens could be observed on larger distances from the non-flooded areas. The density development pattern of Crocidura russula was similar to that of M. arvalis, but densities increased faster. In contrast, Clethrionomys glareolus and Sorex araneus could immediately be observed in the former flooded areas just after the floods, but throughout the year these species were not trapped on distances further than 120 m from the non-flooded areas. Micromys minutus and Apodemus sylvaticus were trapped only occasionally in spring and summer after which those species could be found throughout the floodplain in larger densities in autumn. To analyse the influence of landscape characteristics on recolonisation, the floodplain was classified into suitable, marginal and unsuitable habitat landscape units for each of the small mammal species, based on the trapping results. Landscape characteristics relating to monitoring sites were measured from an aerial photograph using a geographic information system. After that, presence and recolonisation time of small mammals at monitoring sites could be described by multiple regression models based on these measured landscape characteristics. The predictive power of these models was tested in another floodplain by determining the species distribution after 35 weeks. Multiple regression models appeared to be useful in analysing recolonisation patterns and determining the importance of landscape characteristics for recolonisation by small mammals after flooding events. Available distribution data suggest three different types of recolonisers: (1) Gradual, density induced colonisers; (2) Active dispersers and (3) Long-distance dispersers after a lag. Results of regression models confirmed that M. arvalis could be characterised as a type 1 and A. sylvaticus as a type 3 species. The classification of the other species was not possible due to the relatively short time available for recolonisation.

Key words

dispersal behaviour landscape patterns multiple regression models recolonisation riverine ecosystems small mammals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, D. C., K. R. Wilson, M. S. Miller & M. Falck, 2000. Movement patterns of riparian small mammals during predictable floodplain inundation. Journal of Mammalogy 81: 1087–1099.CrossRefGoogle Scholar
  2. Bondrup-Nielsen, S., 1985. An evaluation of the effects of space use and habitat patterns on dispersal in small mammals. Annales Zoologici Fennici 22: 373–383.Google Scholar
  3. Bondrup-Nielsen, S. & F. Karlsson, 1985. Movements and spatial patterns in populations of Clethrionomys species: A review. Annales Zoologici Fennici 22: 385–392.Google Scholar
  4. Bowers, M. A. & G. W. Barrett, 1999. Synthesis: A review of the science and prescriptions for the future. In Barrett, G. W. & J. D. Peles (eds), Landscape Ecology of Small Mammals. Springer Verlag, New York, 313–337.Google Scholar
  5. Boyce, C. C. K. & J. L. Boyce III, 1988. Population biology of Microtus arvalis. III. Regulation of numbers and breeding dispersion of females. Journal of Animal Ecology 57: 737–754.CrossRefGoogle Scholar
  6. Briner, T., W. Nentwig & J.-P. Airoldi, 2005. Habitat quality of wildflower strips for common voles (Microtus arvalis) and its relevance for agriculture. Agriculture, Ecosystems and Environment 105: 173–179.CrossRefGoogle Scholar
  7. Carignan, V. & M.-A. Villard, 2002. Effects of variations in micro-mammal abundance on artificial nest predation in conifer plantations and adjoining deciduous forests. Forest Ecology and Management 157: 255–265.CrossRefGoogle Scholar
  8. Chardon, J. P., F. Adriaensen & E. Matthysen, 2003. Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landscape Ecology 18: 561–573.CrossRefGoogle Scholar
  9. Chase, J. F., J. J. Walsh, A. Cruz, J. W. Prather & H. M. Swanson, 2003. Spatial and temporal activity patterns of the brood parasitic brown-headed cowbird at an urban/wildland interface. Landscape and Urban Planning 64: 179–190.CrossRefGoogle Scholar
  10. Delattre, P., B. de Sousa, E. Fichet-Calvet, J. P. Quéré& P. Giraudoux, 1999. Vole outbreaks in a landscape context: evidence from a six year study of Microtus arvalis. Landscape Ecology 14: 401–412.CrossRefGoogle Scholar
  11. De Nooij, R. J. W., H. J. R. Lenders, R. S. E. W. Leuven, G. de Blust, N. Geilen, B. Goldschmidt, S. Muller, I. Poudevigne & P. H. Nienhuis, 2004. BIO-SAFE: assessing the impact of physical reconstruction on protected and endangered species. River Research and Applications 20: 299–313.CrossRefGoogle Scholar
  12. De Ronde, I., 2003. Vegetatie ontwikkeling in de Millingerwaard gebaseerd op herhaalde vegetatie karteringen 1994-2002. MSc thesis, Wageningen University, Wageningen (in Dutch).Google Scholar
  13. Diffendorfer, J. E., M. S. Gaines & R. D. Holt, 1999. Patterns and impacts of movements at different scales in small mammals. In Barrett, G. W. & J. D. Peles (eds), Landscape Ecology of Small Mammals. Springer Verlag, New York, 63–88.Google Scholar
  14. Erlinge, S., G. Gö ransson, L. Hansson, G. Hö gstedt, O. Liberg, I. N. Nilsson, T. Nilsson, T. von Schantz & M. Sylvén, 1983. Predation as a regulating factor on small rodent populations in southern Sweden. Oikos 40: 36–52.CrossRefGoogle Scholar
  15. Gaines, M. S. & L. R. McClenaghan Jr., 1980. Dispersal in small mammals. Annual Review of Ecology and Systematics 11: 163–196.CrossRefGoogle Scholar
  16. Hanski, I., H. Henttonen, E. Korpimä ki, L. Oksanen & P. Turchin, 2001. Small-rodent dynamics and predation. Ecology 82: 1505–1520.CrossRefGoogle Scholar
  17. Helmer, W. & P. J. A. M. Smeets, 1990. Natuur-en landschapsherstel in de Gelderse Poort: uitgewerkt voor de Ooijpolder en de Millingerwaard. (2nd edn), Direction Forestry and Landscape Development, Utrecht (in Dutch).Google Scholar
  18. Jongbloed, R. H., T. P. Traas & R. Luttik, 1996. A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators II. Calculations for dichlorodiphenyltrichloroethane (DDT) and cadmium. Ecotoxicology and Environmental Safety 34: 279–306.PubMedCrossRefGoogle Scholar
  19. King, D. I., C. R. Griffin & R. M. DeGraaf, 1998. Nest predator distribution among clearcut forest, forest edge and forest interior in an extensively forested landscape. Forest Ecology and Management 104: 151–156.CrossRefGoogle Scholar
  20. Kooistra, L., M. A. J. Huijbregts, A. M. J. Ragas, R. Wehrens & R. S. E. W. Leuven, 2005. Spatial variability and uncertainty in ecological risk assessment: a case study on the effect of cadmium for the little owl in a Dutch river floodplain. Environmental Science and Technology 39: 2177–2187.PubMedCrossRefGoogle Scholar
  21. Kozakiewicz, M., 1993. Habitat isolation and ecological barriers-the effect on small mammal populations and communities. Acta Theriologica 38: 1–30.Google Scholar
  22. Lange, R., P. Twisk, A. van Winden & A. van Diepenbeek, 1994. Zoogdieren van West Europa. KNNV-uitgeverij, Utrecht (in Dutch).Google Scholar
  23. Leuven, R. S. E. W. & I. Poudevigne, 2002. Riverine landscape dynamics and ecological risk assessment. Freshwater Biology 47: 845–865.CrossRefGoogle Scholar
  24. Leuven, R. S. E. W., S. Wijnhoven, L. Kooistra, R. J. W. de Nooij & M. A. J. Huijbregts, 2005. Toxicological constraints for rehabilitation of riverine habitats: a case study for metal contamination of floodplain soils along the Rhine. Archiv für Hydrobiologie, Supplement 155: 657–676.Google Scholar
  25. Matthiopoulos, J., 2003. The use of space by animals as a function of accessibility and preference. Ecological Modelling 159: 239–268.CrossRefGoogle Scholar
  26. Montgomery, W. I., 1989. Population regulation in the wood mouse Apodemus sylvaticus. II. Density dependence in spatial distribution and reproduction. Journal of Animal Ecology 58: 477–494.CrossRefGoogle Scholar
  27. Montgomery, W. I., W. L. Wilson, R. Hamilton & P. Mc-Cartney, 1991. Dispersion in the wood mouse, Apodemus sylvaticus: variable resources in time and space. Journal of Animal Ecology 60: 179–192.CrossRefGoogle Scholar
  28. Mö rtberg, U. M., 2001. Resident bird species in urban forest remnants; landscape and habitat perspectives. Landscape Ecology 16: 193–203.CrossRefGoogle Scholar
  29. Pachinger, K. & J. Haferkorn, 1998. Comparison of the small mammal communities in floodplain forests at the Danube and Elbe rivers. Ekológia (Bratislava) 17: 11–19.Google Scholar
  30. Peles, J. D., D. R. Bowne & G. W. Barrett, 1999. Influence of landscape structure on movement patterns of small mammals. In Barrett, G. W. & J. D. Peles (eds), Landscape Ecology of Small Mammals. Springer Verlag, New York, 41–62.Google Scholar
  31. Poudevigne, I., D. Alard, R. S. E. W. Leuven & P. H. Nienhuis, 2002. A system approach to river restoration: a case study in the lower Seine valley, France. River Research and Applications 18: 239–247.CrossRefGoogle Scholar
  32. Robinson, C. T., K. Tockner & J. V. Ward, 2002. The fauna of dynamic riverine landscapes. Freshwater Biology 47: 661–677.CrossRefGoogle Scholar
  33. Southern, H. N., 1965. Handbook of British Mammals. Mammal Society of the British Isles. Blackwell Scientific Publications, Oxford.Google Scholar
  34. Van Apeldoorn, R. C., W. T. Oostenbrink, A. van Winden & F. F. van der Zee, 1992. Effects of habitat fragmentation on the bank vole, Clethrionomys glareolus, in an agricultural landscape. Oikos 65: 265–274.CrossRefGoogle Scholar
  35. Van den Brink, N. W., N. M. Groen, J. de Jonge & A. T. C. Bosveld, 2003. Ecotoxicological suitability of floodplain habitats in The Netherlands for the little owl (Athene noctua vidalli). Environmental Pollution 122: 127–134.PubMedCrossRefGoogle Scholar
  36. Van der Velde, G., R. S. E. W. Leuven & I. Nagelkerken, 2004. Types of river ecosystems. In: Fresh surface water. Water Sciences, Engineering and Technology Resources. Encyclopedia of life support systems (EOLSS). UNESCO, EOLSS Publishers, Oxford: 1–29 ( Scholar
  37. Verbeylen, G., L. de Bruyn, F. Adriaensen & E. Matthysen, 2003. Does matrix resistance influence red squirrel (Sciurus vulgaris). Landscape Ecology 18: 791–805.CrossRefGoogle Scholar
  38. Verboom, J., R. Foppen, P. Chardon, P. Opdam & P. Luttikhuizen, 2001. Introducing the key patch approach for habitat networks with persistent populations: an example for marshland birds. Biological Conservation 100: 89–101.CrossRefGoogle Scholar
  39. Vos, C. C. & J. P. Chardon, 1998. Effects of habitat fragmentation and road density on the distribution pattern of the moor frog Rana arvalis. Journal of Applied Ecology 35: 44–56.CrossRefGoogle Scholar
  40. Wijnhoven, S., G. van der Velde, R. S. E. W. Leuven & A. J. M. Smits, 2005. Flooding ecology of voles, mice and shrews: the importance of geomorphological and vegetational heterogeneity in river floodplains. Acta Theriologica 50: 453–473.Google Scholar
  41. Wike, L. D., F. D. Martin, H. G. Hanlin & L. S. Paddock, 2000. Small mammal populations in a restored stream corridor. Ecological Engineering 15: S121-S129.Google Scholar
  42. Wolff, J. O., 1999. Behavioral model systems. In Barrett, G. W. & J. D. Peles (eds), Landscape Ecology of Small Mammals. Springer Verlag, New York, 11–40.Google Scholar
  43. Zandberg, B., 1999. Afferdensche en Deestsche Waarden; Inrichtingsplan. Report 99.001.-Directorate-General of Public Works and Water Management, Arnhem (in Dutch).Google Scholar
  44. Zhang, Z. & M. B. Usher, 1991. Dispersal of wood mice and bank voles in an agricultural landscape. Acta Theriologica 36: 239–245.Google Scholar

Copyright information

© Springer2006 2006

Authors and Affiliations

  • S. Wijnhoven
    • 1
  • A. J. M. Smits
    • 1
    • 4
  • G. van der Velde
    • 2
  • R. S. E. W. Leuven
    • 3
  1. 1.Centre for Water and Society, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Animal Ecology and EcophysiologyInstitute for Wetland and Water Research, Radboud University NijmegenNijmegenThe Netherlands
  3. 3.Department of Environmental ScienceInstitute for Wetland and Water Research, Radboud University NijmegenNijmegenThe Netherlands
  4. 4.Water Management and Sustainability, Faculty of Social SciencesErasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations