Advertisement

Airborne laser scanning as a tool for lowland floodplain vegetation monitoring

  • M. W. Straatsma
  • H. Middelkoop
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 187)

Abstract

Monitoring of three-dimensional floodplain vegetation structure is essential for ecological studies, as well as for hydrodynamic modelling of rivers. Height and density of submerged vegetation and density of emergent vegetation are the key characteristics from which roughness parameters in hydraulic models are derived. Airborne laser scanning is a technique with broad applications in vegetation structure mapping, which therefore may be a promising tool in monitoring floodplain vegetation for river management applications. This paper first provides an introduction to the laser scanning technique, and reviews previous studies on the extraction of vegetation height and density of forests, low vegetation and meadows or unvegetated areas. Reliable predictions using laser scan data have been reported for forest height (R2=0.64–0.98), parameters related to forest density, such as stem number, stem diameter, biomass, timber volume or basal area (R2=0.42–0.93), and herbaceous vegetation height (summer condition; R2=0.75–0.89). No empirical relations have been reported on density of herbaceous vegetation. Laser data of meadows and unvegetated areas show too much noise to predict vegetation structure correctly. In a case study for the lower Rhine river, the potential of laser scan mapping of vegetation structure was further explored for winter conditions. Three laser-derived metrics that are often reported in the literature have been applied to characterize local vertical distributions of laser reflections. The laser data clearly show the large structural differences both between and within vegetation units that currently are the basis of floodplain vegetation and roughness mapping. The results indicate that airborne laser scanning is a promising technique for extraction of 3Dstructure of floodplain vegetation in winter, except for meadows and unvegetated areas.

Key words

airborne laser scanning floodplain vegetation vegetation structure model input 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REferences

  1. Aber, J. Ds., 1979. A method for estimating foliage-height profiles in broad leaved forests. Journal of Ecology 67: 35–40.CrossRefGoogle Scholar
  2. Asselman, N. E. M., 2002. Laser altimetry and hydraulic roughness of vegetation, further studies using ground truth. Q3139, WL|Delft Hydraulics, Delft.Google Scholar
  3. Baltsavias, E. P., 1999a. Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing 54: 199–214.CrossRefGoogle Scholar
  4. Baltsavias, E. P., 1999b. Airborne laser scanning: existing systems and firms and other resources. ISPRS Journal of Photogrammetry & Remote Sensing 64: 164–198.CrossRefGoogle Scholar
  5. Baptist, M. J., W. E. Penning, H. Duel, A. J. M. Smits, G. W. Geerling, G. E. M. van der Lee & J. S. L. Van Alphen, 2004. Assessment of the effects of cyclic floodplain rejuvenation on flood levels and biodiversity along the Rhine River. River Research and Applications 20: 285–297.CrossRefGoogle Scholar
  6. Blair, J. B. & M. A. Hofton, 1999. Modelling laser altimeter return waveforms over complex vegetation using high-resolution elevation data. Geophysical Research Letters 26: 2509–2512.CrossRefGoogle Scholar
  7. Blair, J. B., D. L. Rabine & M. A. Hofton, 1999. The laser vegetation imaging sensor: a medium-altitude, digitisationonly, airborne laser altimeter for mapping vegetation and topography. ISPRS Journal of Photogrammetry & Remote Sensing 54: 115–122.CrossRefGoogle Scholar
  8. Bollweg, A., R. Brügelmann, H. van Dijk & E. Vaessen, 2004. Laseraltimetriedata met hoge puntdichtheid voor rivierbeheer. AGI-GAR-2004011, Adviesdienst Geoinformatie en ICT, Delft (in Dutch).Google Scholar
  9. Brandtberg, T., T. A. Warner, R. E. Landenberger & J. B. McGraw, 2003. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sensing of Environment 85: 290–303.CrossRefGoogle Scholar
  10. Carollo, F. G., V. Ferro & D. Termini, 2002. Flow velocity measurements in vegetated channels. Journal of Hydraulic Engineering 128: 664–673.CrossRefGoogle Scholar
  11. Chow, V. T., 1959. Open channel hydraulics. McGraw Hill, New York.Google Scholar
  12. Cobby, D. M., D. C. Mason & I. J. Davenport, 2001. Image processing of airborne scanning laser altimetry data for improved river flood modelling. ISPRS Journal of Photogrammetry & Remote Sensing 56: 121–138.CrossRefGoogle Scholar
  13. Davenport, I. J., R. B. Bradbury, G. R. F. Anderson, J. R. Hayman, J. R. Krebs, D. C. Mason, J. D. Wilson & N. J. Veck, 2000. Improving bird population models using airborne remote sensing. International Journal of Remote Sensing 21: 2705–2717.CrossRefGoogle Scholar
  14. Drake, J. B., R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel & S. Prince, 2002. Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment 79: 305–319.CrossRefGoogle Scholar
  15. Hartmann, R., R. Brügelmann & A. Bollweg, 2004. Vegetatieclassificatie uit laser en optische RS data. AGI/0109/ GAR002, Adviesdienst Geoinformatie en ICT, Delft (in Dutch).Google Scholar
  16. Hay, G. J., T. Blaschke, D. J. Marceau & A. Bouchard, 2003. A comparison of three image-object methods for the multiscale analyses of landscape structure. ISPRS Journal of Photogrammetry & Remote Sensing 57: 327–345.CrossRefGoogle Scholar
  17. Hodgson, M. E. & P. Bresnahan, 2004. Accuracy of airborne lidar-derived elevation: empirical assessment and error budget. Photogrammetric Engineering & Remote Sensing 70: 331–339.Google Scholar
  18. Holmgren, J., M. Nilsson & H. Olsson, 2003. Estimation of tree height and stem volume on plots using airborne laser scanning. Forest Science 49: 419–428.Google Scholar
  19. Holmgren, J. & A. Persson, 2004. Identifying species of individual trees using airborne laser scanner. Remote Sensing of Environment 90: 415–423.CrossRefGoogle Scholar
  20. Holmgren, J. & T. Jonsson, 2004. Large scale airborne laser scanning of forest resources in Sweden. In Thies, M., B. Koch, H. Spiecker & H. Weinacker (eds), Laser-scanners for Forest and Landscape Assessment. International Archives of Photogrammetry and Remote Sensing and Spatial Information Sciences, Volume 36, part 8/W2: 157–160.Google Scholar
  21. Hopkinson, C., L. E. Chasmer, G. Zsigovics, I. F. Creed, M. Sitar, P. Treitz & R. V. Maher, 2004a. Errors in lidar ground elevation and wetland height estimates. In Thies, M., B. Koch, H. Spiecker & H. Weinacker (eds), Laser-scanners for Forest and Landscape Assessment. International Archives of Photogrammetry and Remote Sensing and Spatial Information Sciences, Volume 36, part 8/W2: 108–113.Google Scholar
  22. Hopkinson, C., K. Lim, L. E. Chasmer, P. Treitz, I. F. Creed & C. Gynan, 2004b. Wetland grass to plantation forest-estimating vegetation height from the standard deviation of lidar frequency distributions. In Thies, M., B. Koch, H. Spiecker & H. Weinacker (eds), Laser-scanners for Forest and Landscape Assessment. International Archives of Photogrammetry and Remote Sensing and Spatial Information Sciences, Volume 36, part 8/W2: 288–294.Google Scholar
  23. Hug, C., A. Ullrich & A. Grimm, 2004. Litemapper-5600: A waveform-digitizing lidar terrain and vegetation mapping system. In Thies, M., B. Koch, H. Spiecker & H. Weinacker (eds), Laser-scanners for Forest and Landscape Assessment. International Archives of Photogrammetry and Remote Sensing and Spatial Information Sciences, Volume 36, part 8/W2: 24–29.Google Scholar
  24. Huising, E. J. & L. M. Gomes Pereira, 1998. Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications. ISPRS Journal of Photogrammetry & Remote Sensing 53: 245–261.CrossRefGoogle Scholar
  25. Jansen, B. J. M. & J. J. G. M. Backx, 1998. Ecotope mapping Rhine Branches-east 1997. 98.054, Rijksinstituut voor Integraal Zoetwaterbeheer en Afvalwaterbehandeling, Lelystad (in Dutch).Google Scholar
  26. Jesse, P., 2004. Hydraulic resistance in (nature) development. RIZA werkdocument, 2003.124X, Rijksinstituut voor Integraal Zoetwaterbeheer en Afvalwaterbehandeling, Arnhem (in Dutch).Google Scholar
  27. Katzenbeisser, R., 2003. Technical Note On: Echo Detection. Toposys GMBH, Biberach.Google Scholar
  28. Kay, T. L. & J. T. Kajiya, 1986. Ray tracing complex scenes. Computer Graphics 20: 269–278.CrossRefGoogle Scholar
  29. Kilian, J., N. Haala & M. Englich, 1996. Capture and evaluation of airborne scanner data. International Archives of Photogrammetry and Remote Sensing 1031 B3: 383–388.Google Scholar
  30. Koppejan, H., 1998. Toelichting bij de vegetatie-en structuurkaart Duursche Waarden 1996 op basis van false-color luchtfoto’s. MDGAT 9716, Rijkswaterstaat Meetkundige Dienst, Delft (in Dutch).Google Scholar
  31. Kraus, K. & N. Pfeifer, 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 53: 193–203.CrossRefGoogle Scholar
  32. Lefsky, M. A., W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies & D. Harding, 1999a. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-Fir Western Hemlock forests. Remote Sensing of Environment 70: 339–361.CrossRefGoogle Scholar
  33. Lefsky, M. A., D. Harding, W. B. Cohen, G. Parker & H. H. Shugart, 1999b. Surface lidar remote sensing of basal area and biomass in deciduous forests of Eastern Maryland, USA. Remote Sensing of Environment 67: 83–98.CrossRefGoogle Scholar
  34. Lefsky, M.A., W. B. Cohen, G. Parker & D. Harding, 2002. Lidar remote sensing for ecosystem studies. BioScience 52: 19–30.CrossRefGoogle Scholar
  35. Leuven, R. S. E. W., Y. Gerig, I. Poudevigne, G. W. Geerling, L. Kooistra & B. G. W. Aarts, 2002. Cumulative impact assessment of ecological rehabilitation and infrastructure facilities in floodplains along the middle reach of the River Waal. In Leuven, R. S. E. W., I. Poudevigne & R. M. Teeuw (eds), Application of Geographic Information Systems and Remote Sensing in River Studies. Backhuys Publishers, Leiden: 201–216.Google Scholar
  36. Lillesand, T. M. & R. W. Kiefer, 1994. Remote Sensing and Image Interpretation. John Wiley & sons, New York.Google Scholar
  37. Lim, K., P. Treitz, M. Wulder, B. St-Onge & M. Flood, 2003. Lidar remote sensing of forest structure. Progress in Physical Geography 27: 88–106.CrossRefGoogle Scholar
  38. MacArthur, R. H. & H. S. Horn, 1969. Foliage profile by vertical measurements. Ecology 50: 802–804.CrossRefGoogle Scholar
  39. MacArthur, R. H. & J. W. MacArthur, 1961. On bird species diversity. Ecology 42: 594–598.CrossRefGoogle Scholar
  40. Magnussen, S. & P. Boudewyn, 1998. Derivations of stand height from airborne laser scanner data with canopy-based quantile estimators. Canadian Journal of Forest Research 28: 1016–1031.CrossRefGoogle Scholar
  41. Maltamo, M., K. Eerikainen, J. Pitkanen, J. Hyyppa & M. Vehmas, 2004. Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment 90: 319–330.CrossRefGoogle Scholar
  42. Marks, K. & P. Bates, 2000. Integration of high-resolution topographic data with floodplain flow models. Hydrological Processes 14: 2109–2122.CrossRefGoogle Scholar
  43. Mason, D. C., D. M. Cobby, M. S. Horrit & P. Bates, 2003. Floodplain friction parameterization in two-dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry. Hydrological Processes 17: 1711–1732.CrossRefGoogle Scholar
  44. Means, J. E., S. A. Acker, D. J. Harding, J. B. Blair, M. A. Lefsky, W. B. Cohen, M. E. Harmon & W. A. McKee, 1999. Use of large-footprint scanning airborne lidar to estimate forest stand characteristics in the Western Cascades of Oregon. Remote Sensing of Environment 67: 298–308.CrossRefGoogle Scholar
  45. Morsdorf, F., E. Meier, B. Kotz, K. I. Itten, M. Dobbertin & B. Allgower, 2004. LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sensing of Environment 92: 353–362.CrossRefGoogle Scholar
  46. Næsset, E, 1997a. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal of Photogrammetry & Remote Sensing 52: 49–56.CrossRefGoogle Scholar
  47. Næsset, E., 1997b. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sensing of Environment 61: 246–253.CrossRefGoogle Scholar
  48. Næsset, E., 2002. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment 80: 88–99.CrossRefGoogle Scholar
  49. Næsset, E., 2004. Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small-footprint airborne scanning laser. Remote Sensing of Environment 91: 243–255.CrossRefGoogle Scholar
  50. Næsset, E. & K.-O. Bjerknes, 2001. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. Remote Sensing of Environment 78: 328–340.CrossRefGoogle Scholar
  51. Næsset, E. & T. Okland, 2002. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sensing of Environment 79: 105–115.CrossRefGoogle Scholar
  52. Nienhuis, P. H. & R. S. E. W. Leuven, 2001. River restoration and floodprotection: controversy or synergism. Hydrobiologia 444: 85–99.CrossRefGoogle Scholar
  53. Nienhuis, P. H., A. D. Buijse, R. S. E. W. Leuven, A. J. M. Smits, R. J. W. de Nooij & E. M. Samborska, 2002. Ecological rehabilitation of the lowland basin of the river Rhine (NW Europe). Hydrobiologia 478: 53–72.CrossRefGoogle Scholar
  54. Nilsson, M., 1996. Estimating tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment 56: 1–7.CrossRefGoogle Scholar
  55. Oude Elberink, S., G. Brand & R. Brügelmann, 2003. Quality improvement of laser altimetry DEM’s. In Maas, H.-G., G. Vosselman & A. Streilein (eds), 3-D Reconstruction from Airborne Laserscanner and InSAR Data. International Archives of Photogrammetry and Remote Sensing and Spatial Information Sciences 34 3/W13: 51–58.Google Scholar
  56. Persson, Å., J. Holmgren & U. Söderman, 2002. Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering & Remote Sensing 68: 925–932.Google Scholar
  57. Petryk, S. & G. Bosmajian, 1975. Analysis of flow through vegetation. Journal of Hydraulics Divisions 101: 871–884.Google Scholar
  58. Pfeifer, N., B. Gorte & S. Oude Elberink, 2004. Influences of vegetation on laser altimetry-analyses and correction approaches. In Thies, M., B. Koch, H. Spiecker & H. Weinacker (eds), Laser-scanners for Forest and Landscape Assessment. International Archives of Photogrammetry and Remote Sensing and Spatial Information Sciences 36 8/W2: 283–287.Google Scholar
  59. Popescu, S. C., R. H. Wynne & R. F. Nelson, 2002. Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size. Computers and Electronics in Agriculture 37: 71–95.CrossRefGoogle Scholar
  60. Ritchie, J. C., D. L. Evans, D. Jacobs, J. H. Everitt & M. A. Weltz, 1993. Measuring canopy structure with an airborne laser altimeter. Transactions of ASAE 36: 1235–1238.Google Scholar
  61. Ritchie, J. C., M. Menenti & M. A. Weltz, 1996. Measurements of land surface features using an airborne laser altimeter: the HAPEX-sahel experiment. International Journal of Remote Sensing 17: 3705–3724.CrossRefGoogle Scholar
  62. Schmidt, K. S. & A. K. Skidmore, 2003. Spectral discrimination of vegetation types in a coastal wetland. Remote Sensing of Environment 85: 92–108.CrossRefGoogle Scholar
  63. Shabalova, M. V., W. P. A. van Deursen & T. A. Buishand, 2003. Assessing future discharge of the river Rhine using regional climate model integrations and a hydrological model. Climate Research 23: 233–246.CrossRefGoogle Scholar
  64. Silva, W., F. Klijn & J. Dijkman, 2001. Room for the Rhine branches in The Netherlands. RIZA-report 2001.031, Delft Hydraulics report R3294, Rijksinstituut voor Integraal Zoetwaterbeheer en Afvalwaterbehandeling, WL Delft Hydraulics, Arnhem, Delft.Google Scholar
  65. Sithole, G. & G. Vosselman, 2004. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry & Remote Sensing 59: 85–101.CrossRefGoogle Scholar
  66. Thompson, A. G., R. M. Fuller & J. A. Eastwood, 1998. Supervised versus unsupervised methods for classification of coasts and river corridors from airborne remote sensing. International Journal of Remote Sensing 19: 3423–3431.CrossRefGoogle Scholar
  67. Van der Sande, C. J., S. M. de Jong & A. P. J. de Roo, 2003. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. International Journal of Applied Earth Observation and Geoinformation 4: 217–229.CrossRefGoogle Scholar
  68. Van Stokkom, H. T. C., A. J. M. Smits & R. S. E. W. Leuven, 2005. Flood defense in The Netherlands A new era, a new approach. Water International 30: 76–87.CrossRefGoogle Scholar
  69. Van Velzen, E. H., P. Jesse, P. Cornelissen & H. Coops, 2003. Flow friction of vegetation in floodplains part 1. 2003.028, Rijksinstituut voor Integraal Zoetwaterbeheer en Afvalwaterbehandeling, Arnhem (in Dutch).Google Scholar
  70. Vosselman, G., 2000. Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing, Amsterdam 33 B3/2: 935–942.Google Scholar
  71. Wagner, W., A. Ulrich, T. Melzer, C. Briese & K. Kraus, 2004. From single pulse to full waveform digitizing laser scanners: potential and practical challenges. International Archives of Photogrammetry and Remote Sensing, Amsterdam 35 B3: http://www.isprs.org/istanbul/comm3/papers/ 267.pdf.Google Scholar
  72. Ward, J. V. & K. Tockner, 2001. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology 46: 807–819.CrossRefGoogle Scholar
  73. Wehr, A. & U. Lohr, 1999. Airborne laser scanning-an introduction and overview. ISPRS Journal of Photogrammetry & Remote Sensing 54: 68–82.CrossRefGoogle Scholar
  74. Weltz, M. A., J. C. Ritchie & H. Dale Fox, 1994. Comparison of laser and field measurements of vegetation height and canopy cover. Water Resources Research 30: 1311–1319.CrossRefGoogle Scholar
  75. Yu, X., J. Hyyppä & H. Hyyppä, 2004. Effects of flight altitude on tree height estimation using airborne laser scanning. In Thies, M., B. Koch, H. Spiecker & H. Weinacker (eds), Laser-scanners for Forest and Landscape Assessment. International Archives of Photogrammetry and Remote Sensing and Spatial Information Sciences 36 8/W2: 96–101.Google Scholar

Copyright information

© Springer2006 2006

Authors and Affiliations

  • M. W. Straatsma
    • 1
  • H. Middelkoop
    • 1
  1. 1.Department of Physical GeographyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations