Advertisement

Trophic relationships in the Rhine food web during invasion and after establishment of the Ponto-Caspian invader Dikerogammarus villosus

  • M. C. van Riel
  • G. van der Velde
  • S. Rajagopal
  • S. Marguillier
  • F. Dehairs
  • A. bij de Vaate
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 187)

Abstract

The Rhine ecosystem is highly influenced by anthropogenic stresses from pollution, intensive shipping and increased connectivity with other large European rivers. Canalization of the Rhine resulted in a reduction of heterogeneity to two main biotopes: sandy streambeds and riverbanks consisting of groyne stones. Both biotopes are heavily subjected to biological invasions, affecting the rivers food web structure. The Ponto- Caspian amphipods, Chelicorophium curvispinum and Dikerogammarus villosus, have exerted the highest impact on this food web. The filterfeeding C. curvispinum dominated the Rhine food web on the stones in 1998, swamping the stone substrata with mud. However, in 2001 it decreased in numbers, most likely due to top-down regulation caused by increased parasitic and predatory pressure of other more recently invaded Ponto-Caspian species. D. villosus showed a fast population increase after its invasion and particularly influenced the macroinvertebrate community on the stones by predaceous omnivory. This species seemed to have maintained its predatory level after its population established. Effects of these mass invaders on the macroinvertebrate community of sandy streambeds in the Rhine are unclear. Here, low densities of macroinvertebrates were observed with the Asiatic clam, Corbicula fluminea, as most abundant species. Stable isotope values of food webs from the stones and sand in 2001 were similar. Aquatic macrophytes are nearly absent and the food web is fuelled by phytoplankton and particulate organic matter, originating from riparian vegetation as indicated by similar δ13C values. Omnivores, filter-, deposit-, and detritusfeeders are the primary and secondary macroinvertebrate consumers and function as keystone species in transferring energy to higher trophic levels. Invaders comprise 90% of the macroinvertebrate numbers, and can be considered ecosystem engineers determining the functional diversity and food web structure of the Rhine by either bottom-up or top-down regulation.

Key words

macroinvertebrates invaders ecotopes food web trophic relations stable isotopes Rhine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Admiraal, W., G. van der Velde, H. Smit & W. G. Cazemier, 1993. The rivers Rhine and Meuse in the Netherlands: present state and signs of ecological recovery. Hydrobiologia 265: 97–128.Google Scholar
  2. Admiraal, W., L. Breebaart, G. M. J. Tubbing, B. van Zanten, E. D. de Ruijter van Steveninck & R. Bijkerk, 1994. Seasonal variation in composition and production of planktonic communities in the Lower River Rhine. Freshwater Biology 32: 519–531.CrossRefGoogle Scholar
  3. Bij de Vaate, A. & A. Klink, 1995. Dikerogammarus villosus Sowinsky (Crustacea: Gammaridae), a new immigrant in the Dutch part of the Lower Rhine. Lauterbornia 20: 51–54.Google Scholar
  4. Bij de Vaate, A. & M. B. A. Swarte, 2001. Dendrocoelum romanodanubiale in the Rhine delta: first records from The Netherlands. Lauterbornia 40: 53–56.Google Scholar
  5. Bij de Vaate, A., K. Jazdzewski, H. A. M. Ketelaars, S. Gollasch & G. van der Velde, 2002. Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 59: 1159–1174.CrossRefGoogle Scholar
  6. Bij de Vaate, A. 2003. Degradation and Recovery of the Freshwater Fauna in the Lower Sections of the Rivers Rhine and Meuse. PhD Thesis, University of Wageningen, Wageningen.Google Scholar
  7. Bij de Vaate, A., R. Breukel & G. van der Velde, 2006. Longterm developments in ecological rehabilitation of the main distributaries in the Rhine Delta: fish and macroinvertebrates. Hydrobiologia 565: 229–242.CrossRefGoogle Scholar
  8. Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Ecology 93: 10844–10847.Google Scholar
  9. Crooks, J. A., 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97: 153–166.CrossRefGoogle Scholar
  10. Den Hartog, C., F. W. B. van den Brink & G. van der Velde, 1992. Why was the invasion of Corophium curvispinum and Corbicula species so successful? Journal of Natural History 26: 1121–1129.CrossRefGoogle Scholar
  11. DeNiro, M. J. & S. Epstein, 1978. Influence of the diet on the distribution of the carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495–506.CrossRefGoogle Scholar
  12. DeNiro, M. J. & S. Epstein, 1981. Influence of the diet on the distribution of the nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341–351.CrossRefGoogle Scholar
  13. Dick, J. T. A., I. Montgomery & R. W. Elwood, 1993. Replacement of the indigenous amphipod Gammarus duebeni celticus by the introduced G. pulex: differential cannibalism and mutual predation. Journal of Animal Ecology 62: 79–88.CrossRefGoogle Scholar
  14. Dick, J. T. A., D. Platvoet & D. W. Kelly, 2002. Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea: Amphipoda). Canadian Journal of Fisheries and Aquatic Sciences 59: 1078–1084.CrossRefGoogle Scholar
  15. Fahnenstiel, G. L., T. L. Lang, G. A. Bridgeman, M. J. McCormick & T. F. Nalepa, 1995. Phytoplankton productivity in Saginaw Bay, Lake Huron: effects of zebra mussel (Dreissena polymorpha) colonization. Journal of Great Lakes Research 21: 465–475.Google Scholar
  16. Gearing, J. N., 1991. The study of diet and trophic relationships through natural abundance 13C. In Coleman, D. C. & B. Fry, (eds), Carbon Isotope Techniques. Academic Press, San Diego, 201–218.Google Scholar
  17. Haas, G., M. Brunke & B. Streit, 2002. Fast turnover in dominance of exotic species in the Rhine River determines biodiversity and ecosystem function: an affair between amphipods and mussels. In Leppä koski, E., S. S. Gollasch & S. Olenin (eds), Invasive Aquatic Species of Europe: Distribution, Impacts and Management. Kluwer Academic Publishers, Dordrecht: 426–432.Google Scholar
  18. Hansson, S., J. E. Hobbie, R. Elmgren, U. Larsson, B. Fry & S. Hohansson, 1997. The stable nitrogen ratio as a marker of food-web interactions and fish migration. Ecology 78: 2249–2257.Google Scholar
  19. Hobson, K. A. & H. E. Welch, 1992. Determination of trophic relationships within a high arctic food web using δ13C and δ15N analysis. Marine Ecology Progress Series 84: 9–18.CrossRefGoogle Scholar
  20. Hobson, K. A., D. Schell, D. Renouf & E. Noseworthy, 1996. Stable-carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: implications for dietary reconstructions involving marine mammals. Canadian Journal of Fisheries and Aquatic Sciences 53: 528–533.CrossRefGoogle Scholar
  21. Hobson, K. A., J. L. Sease, R. L. Merrick & J. F. Piatt, 1997. Investigating trophic relationships of Pinnipeds in Alaska and Washington using stable isotope ratios of nitrogen and carbon. Marine Mammal Sciences 13: 114–132.CrossRefGoogle Scholar
  22. Huryn, A. D., R. H. Riley, R. G. Young, C. J. Arbuckle & K. Peacock, 2002. Natural-abundance stable C and N isotopes indicate weak upstream-downstream linkage of food webs in a grassland river. Archiv für Hydrobiologie 153: 177–196.Google Scholar
  23. Jantz B., 1996. Wachstum, Reproduction, Populationsentwicklung und Beeinträ chtigung der Zebramuschel (Dreissena polymorpha) in einem grossen Fliessgewä sser, dem Rhein. PhD Thesis, University of Köln, Köln.Google Scholar
  24. Kelleher, B., P. J. M. Bergers, F. W. B. van den Brink, P. S. Giller, G. van der Velde & A. bij de Vaate, 1998. Effects of exotic amphipod invasions on fish diet in the Lower Rhine. Archiv für Hydrobiologie 143: 363–382.Google Scholar
  25. Kroopnick, P., 1974. The dissolved O2-CO2-13C system in the eastern equatorial Pacific. Deep Sea Research 21: 211–227.Google Scholar
  26. Marguillier S., 1998. Stable Isotopes Ratios and Food Web Structure of Aquatic Ecosystems. PhD Thesis, Vrije Universiteit Brussel, Brussels.Google Scholar
  27. Marguillier, S., F. Dehairs, G. van der Velde, B. Kelleher & S. Rajagopal, 1998. Initial results on the trophic relationships based on Corophium curvispinum in the Rhine traced by stable isotopes. In Nienhuis, P. H., R. S. W. E. Leuven & A. M. J. Ragas (eds), New Concepts for Sustainable Management of River Basins. Backhuys Publishers, Leiden: 171–177.Google Scholar
  28. McClelland, J. W.,I. Valiela & R. H. Michener, 1997. Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnology and Oceanography 42: 930–937.CrossRefGoogle Scholar
  29. Minagawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48: 1135–1140.CrossRefGoogle Scholar
  30. Mook, W. G. & F. C. Tan, 1991. Stable carbon isotopes in rivers and estuaries. In Degens, E. T., S. Kempe & J. E. Richey (eds), Biochemistry of Major World Rivers. J. Wiley and Sons Ltd, Chicester: 245–264.Google Scholar
  31. Nichols, K. H. & G. J. Hopkins, 1993. Recent changes in Lake Erie (north shore) phytoplankton: cumulative effects of phosphorus loading reductions and the zebra mussel introduction. Journal of Great Lakes Research 19: 637–646.CrossRefGoogle Scholar
  32. Nijssen, H. & S. J. De Groot, 1987. De vissen van Nederland. Natuurhistorische bibliotheek 43. Koninklijke Nederlandse Natuurhistorische Vereniging, Hoogwoud (in Dutch).Google Scholar
  33. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.CrossRefGoogle Scholar
  34. Rajagopal, S., G. van der Velde, B. G. P. Paffen, F. W. B. van den Brink & A. de bij Vaate, 1999. Life history and reproductive biology of the invasive amphipod Corophium curvispinum (Crustacea: Amphipoda) in the Lower Rhine. Archiv fü r Hydrobiologie 144: 305–325.Google Scholar
  35. Ricciardi, A., 2001. Facilitate interactions among aquatic invaders: is an “invasional meltdown“ occurring in the Great Lakes? Canadian Journal of Fisheries and Aquatic Siences 58: 2513–2525.CrossRefGoogle Scholar
  36. Thorp, J. H., M. D. Delong, K. Greenwood & A. F. Casper, 1998. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river. Oecologia 117: 551–563.CrossRefGoogle Scholar
  37. Tieszen, L., T. W. Boutton, K. G. Tesdahl & N. H. Slade, 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for 13C analysis of diet. Oecologia 57: 32–37.CrossRefGoogle Scholar
  38. Van den Brink, F. W. B., G. van der Velde & A. bij de Vaate, 1991. Amphipod invasion on the Rhine. Nature 352: 576.Google Scholar
  39. Van Riel, M. C., G. van der Velde & A. de bij Vaate, 2003. Pomphorhynchus spec. (Acanthocephala) uses the invasive amphipod Chelicorophium curvispinum (G. O. Sars, (1895) as an intermediate host in the River Rhine. Crustaceana 76: 241–247.CrossRefGoogle Scholar
  40. Van Riel, M.C., G. van der Velde & A. bij de Vaate, 2004. Alien amphipod invasions in the river Rhine due to river connectivity: a case of competition and mutual predation. In Douben, N. & A. G. Van Os (eds), Proceedings NCR-days (2003); Dealing With Floods Within Constraints. NCRpublication 24-(2004). Netherlands Centre for River Studies, Delft: 51–53.Google Scholar
  41. Van der Velde, G., G. van Urk, F. W. B. van den Brink, F. Colijn, W. A. Bruggeman & R. S. E. W. Leuven, 1990. Rein Rijnwater, een sleutelfactor in chemisch oecosysteemherstel. In Hekstra, G. P. & F. J. M. van Linden (eds), Flora en Fauna Chemisch Onder Druk. Pudoc, Wageningen: 231–266.Google Scholar
  42. Van der Velde, G., S. Rajagopal, F. W. B. van den Brink, B. Kelleher, B. G. P. Paffen, A. J. Kempers & A. bij de Vaate, 1998. Ecological impact of an exotic amphipod invasion in the River Rhine. In Nienhuis, P. H., R. S. E. W. Leuven & A. M. J. Ragas (eds), New Concepts for Sustainable Management of River Basins. Backhuys Publishers, Leiden: 159–169.Google Scholar
  43. Van der Velde, G., S. Rajagopal, B. Kelleher, I. B. Muskó & A. bij de Vaate, 2000. Ecological impact of crustacean invaders: general considerations and examples from the Rhine River. Crustacean Issues 12: 3–33.Google Scholar
  44. Van der Velde, G., I. Nagelkerken, S. Rajagopal & A. bij de Vaate, 2002. Invasions by alien species in inland freshwater bodies in Western Europe: The Rhine Delta. In Leppä koski, E., S. Gollasch & S. Olenin (eds), Invasive Aquatic Species of Europe: Distribution, Impacts and Management. Kluwer Academic Publishers, Dordrecht: 360–372.Google Scholar
  45. Van der Velde G., S. Rajagopal, M. Kuyper-Kollenaar, A. bij de Vaate, D. W. Thieltges & H. J. MacIsaac, 2006. Biological invasions-concepts to understand and predict a global threat. In Bobbink R., B. Beltman, J. T. A. Verhoeven & D. F. Whigham(eds), Wetlands as a natural resource. Volume 2. Wetlands: Functioning, Biodiversity, Conservation and Restoration. Ecological Studies 191. Springer Verlag Dordrecht (in press).Google Scholar
  46. Vander Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80: 1395–1404.CrossRefGoogle Scholar
  47. Vitousek, P. M., 1990. Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57: 7–13.CrossRefGoogle Scholar
  48. Wijnhoven, S., M. C. van Riel & G. van der Velde, 2003. Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the water. Aquatic Ecology 37: 151–158.CrossRefGoogle Scholar

Copyright information

© Springer2006 2006

Authors and Affiliations

  • M. C. van Riel
    • 1
    • 4
  • G. van der Velde
    • 1
    • 4
  • S. Rajagopal
    • 1
    • 4
  • S. Marguillier
    • 2
  • F. Dehairs
    • 2
  • A. bij de Vaate
    • 3
    • 4
  1. 1.Department of Animal Ecology and Ecophysiology, Section Aquatic Animal Ecology, Institute for Wetland and WaterResearchRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Analytical ChemistryVrije Universiteit BrusselBrusselsBelgium
  3. 3.Ministry of Transport, Public Works and Water ManagementInstitute for Inland Water Management and Waste Water TreatmentThe Netherlands
  4. 4.Member of Netherlands Centre for River StudiesThe Netherlands

Personalised recommendations