Skip to main content

BasinBox: a generic multimedia fate model for predicting the fate of chemicals in river catchments

  • Chapter
Living Rivers: Trends and Challenges in Science and Management

Part of the book series: Developments in Hydrobiology ((DIHY,volume 187))

Abstract

Multimedia fate models have proven to be very useful tools in chemical risk assessment and management. This paper presents BasinBox, a newly developed steady-state generic multimedia fate model for evaluating risks of new and existing chemicals in river basins. The model concepts, as well as the intermedia processes quantified in the model, are outlined, and an overview of the required input parameters is given. To test the BasinBox model, calculations were carried out for predicting the fate of chemicals in the river Rhine basin. This was done for a set of 3175 hypothetical chemicals and three emission scenarios to air, river water and cropland soils. For each of these hypothetical chemicals and emission scenarios the concentration ratio between the downstream area and the upstream area was calculated for all compartments. From these calculations it appeared that BasinBox predicts significant concentration differences between upstream and downstream areas of the Rhine river basin for certain types of chemicals and emission scenarios. There is a clear trend of increasing chemical concentrations in downstream direction of the river basin. The calculations show that taking into account spatial variability between upstream, midstream and downstream areas of large river basins can be useful in the predictions of environmental concentrations by multimedia fate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asselman, N. E. M., 1997. Suspended Sediment in the River Rhine. The Impact of Climate Change on Erosion, Transport and Deposition. PhD-thesis, Department of Physical Geography, Utrecht University, Utrecht.

    Google Scholar 

  • Baughman, G. L. & R. R. Lassiter, 1978. Prediction of environmental pollutant concentration. In Cairns, J., D. L. Dickson & A.W. Maki (eds), Estimating the Hazard of Chemical Substances to Aquatic Life. American Society for Testing Materials (ASTM) 657: 34–54.

    Google Scholar 

  • Boorman, D. B., 2003. LOIS in-stream water quality modelling. Part 1: catchments and methods. Science of the Total Environment 314: 379–395.

    Article  PubMed  CAS  Google Scholar 

  • Brandes, L. J., H. den Hollander & D. van de Meent, 1996. SimpleBox 2.0: A Nested Multimedia Fate Model for Evaluating the Environmental Fate of Chemicals. RIVM, Bilthoven.

    Google Scholar 

  • Briggs, C. G., R. H. Bromilov & A. A. Evans, 1982. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pesticide Science 13: 495–504.

    Article  CAS  Google Scholar 

  • Cahill, T. M. & D. Mackay, 2003. A high-resolution model for estimating the environmental fate of multi-species chemicals: application to malathion and pentachlorophenol. Chemosphere 53: 571–581.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain, A.C., 1967. Transport of lycopodium spores and other small particles to rough surfaces. Proceedings of the Royal Society of London A296: 45–70.

    Article  Google Scholar 

  • Centrum voor Landbouw en Milieu (CLM), 2004. Werken aan duurzame landbouw en een aantrekkelijk platteland. http://www.clm.nl (in Dutch).

  • Chemicalland21, 2005. http://www.chemicalland21.com.

  • Commonwealth Scientific and Industrial Research Organization (CSIRO), 1994. CSIRO sustainable ecosystems-Software and resources. http://www.cse.csiro.au/poptools/.

  • Coulibaly, L., M. E. Labib & R. Hazen, 2004. A GIS-based multimedia watershed model: development and application. Chemosphere 55: 1067–1080.

    Article  PubMed  CAS  Google Scholar 

  • Cousins, I. T. & D. Mackay, 2001. Strategies for including vegetation compartments in multimedia models. Chemosphere 44: 643–654.

    Article  PubMed  CAS  Google Scholar 

  • De Nooij, R. J. W., W. C. E. P. Verberk, H. J. R. Lenders, R. S. E. W. Leuven & P. H. Nienhuis, 2006. The importance of hydrodynamics for protected and endangered biodiversity of lowland rivers. Hydrobiologia 565: 153–162.

    Article  Google Scholar 

  • De Wit, M. J. M., 1999. Nutrient fluxes in the Rhine and Elbe basins. Ph.D. thesis. Department of Physical Geography, Utrecht University, Utrecht.

    Google Scholar 

  • Den Hollander, H. & D. van de Meent, 2004. SimpleBox 3.0: A Multimedia Fate Model for Evaluating Environmental Behaviour of Chemicals. RIVM, Bilthoven.

    Google Scholar 

  • Diamond, M. L., D. A. Priemer & N. L. Law, 2001. Developing a multimedia model of chemical dynamics in an urban area. Chemosphere 44: 1655–1667.

    Article  PubMed  CAS  Google Scholar 

  • DiToro, D. M., C. S. Zarba, D. J. Hansen, W. J. Berry, R. C. Swartz, C. E. Cowan, S. P. Pavlou, H. E. Allen, N. A. Thomas & P. R. Paquin, 1991. Technical basis for establishing sediment quality criteria for nonionic organicchemicals using equilibrium partitioning. Environmental Toxicology and Chemistry 10: 1541–1583.

    Article  CAS  Google Scholar 

  • Deutscher Wetterdienst (DWD), 2004. http://www.dwd.de. EC, 2000. Water Framework Directive. European Commission, Brussels.

    Google Scholar 

  • ECB, 2003. Technical Guidance Document on Risk Assessment. JRC-Ispra, Italy.

    Google Scholar 

  • ECNC, 2004. European Centre for Nature Conservation. http://www.ecnc.nl/.

  • FAO, 2001. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/.

    Google Scholar 

  • Feijtel, T., G. Boeije, M. Matthies, A. Young, G. Morris, C. Gandolfi, B. Hansen, K. Fox, M. Holt, V. Koch, R. Schroder, G. Cassani, D. Schowanek, J. Rosenblom & H. Niessen, 1997. Development of a geography-referenced regional exposure assessment tool for European rivers-GREAT-ER contribution to GREAT-ER #1. Chemosphere 34: 2351–2373.

    Article  CAS  Google Scholar 

  • Fenner, K., M. Scheringer & K. Hungerbühler, 2000. Persistence of parent compounds and transformation products in a level IV multimedia model. Environmental Science and Technology 34: 3809–3817.

    Article  CAS  Google Scholar 

  • Fenner, K., M. Scheringer, M. MacLeod, M. Matthies, T. McKone, M. Stroebe, A. Beyer, M. Bonnell, A. C. Le Gall, J. Klasmeier, D. Mackay, D. van de Meent, D. Pennington, B. Scharenberg, N. Suzuki & F. Wania, 2005. Comparing estimates of persistence and long-range transport potential among multimedia models. Environmental Science and Technology 39: 1932–1942.

    Article  PubMed  CAS  Google Scholar 

  • Hofstee, C. & H. Leenaers, 2002. Actief beheer van de waterbodem in landelijk perspectief. TNO-NITG, Utrecht (in Dutch).

    Google Scholar 

  • Hollander, A., L. K. Hessels, P. de Voogt & D. van de Meent, 2004. Implementation of depth-dependent soil concentrations in multimedia mass balance models. SAR and QSAR in Environmental Research 15: 457–468.

    Article  PubMed  CAS  Google Scholar 

  • Horstmann, M. & M. S. McLachlan, 1998. Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atmospheric Environment 32: 1799–1809.

    Article  CAS  Google Scholar 

  • Jackson, R., 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108: 389–411.

    Article  Google Scholar 

  • Junge, C. E., 1977. Basic considerations about trace constituent in the atmosphere related to the fate of global pollutants. In Suffet, I. H. (ed.), Fate of Pollutants in the Air and Water Environment. Wiley-Interscience: 7–25.

    Google Scholar 

  • Koninklijk Nederlands Meteorologisch Instituut (KNMI), 2004. Klimaat en klimaatverandering: klimatologische informatie. http://www.knmi.nl/voorl/weer/ (in Dutch).

  • Mackay, D., 1991. Multimedia Environmental Models. Lewis, Chelsea.

    Google Scholar 

  • Mackay, D. & S. Paterson, 1981. Calculating fugacity. Environmental Science and Technology 15: 1006–1014.

    Article  CAS  Google Scholar 

  • Mackay, D., S. Paterson & M. Joy, 1983. Application of fugacity models to the estimation of chemical-distribution and persistence in the environment. ACS Symposium Series 225: 175–196.

    Article  CAS  Google Scholar 

  • McKone, T. E., 1993. CalTOX, A Multimedia Total-exposure Model for Hazardous-wastes Sites. Part 1: Executive Summary. Lawrence Livermore National Laboratory, Livermore.

    Google Scholar 

  • McKone, T. E. & D. H. Bennett, 2003. Chemical-specific representation of air-soil exchange and soil penetration in regional multimedia models. Environmental Science and Technology 37: 3123–3132.

    Article  PubMed  CAS  Google Scholar 

  • McKone, T. E., A. B. Bodnar & E. G. Hertwich, 2001. Development and Evaluation of State-specific Landscape Data Sets for Multimedia Source-to-dose Models. School of Public Health, University of California, Berkeley.

    Google Scholar 

  • McLachlan, M. S., G. Czub & F. Wania, 2002. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils. Environmental Science and Technology 36: 4860–4867.

    Article  PubMed  CAS  Google Scholar 

  • MeteoSchweiz, 2004. http://www.meteoschweiz.ch.

  • Meybeck, M., L. Laroche, H. H. Durr & J. P. M. Syvitski, 2003. Global variability of daily total suspended solids and their fluxes in rivers. Global and Planetary Change 39: 65–93.

    Article  Google Scholar 

  • Nationmaster, 2005. http://www.nationmaster.com.

  • Nienhuis, P. H., A. D. Buijse, R. S. E. W. Leuven, A. J. M. Smits, R. J. W. de Nooij & E. M. Samborska, 2002. Ecological rehabilitation of the lowland basin of the river Rhine (NW Europe). Hydrobiologia 478: 53–72.

    Article  Google Scholar 

  • PAN, 2005. Pesticides database. http://www.pesticideinfo.org/ List_ChemicalsAlpha.jsp.

  • Paterson, S. & D. Mackay, 1994. Interpreting chemical partitioning in a soil-plant-air system with a fugacity model. In Trapp, S. & C. McFarlane (eds), Plant Contamination, Modeling and Simulation of Organic Chemical Processes. Lewis Publishers/CRC Press: 191–214.

    Google Scholar 

  • Prevedouros, K., K. C. Jones & A. J. Sweetman, 2004. European-scale modeling of concentrations and distribution of polybrominated diphenyl ethers in the pentabromodiphenyl ether product. Environmental Science and Technology 38: 5993–6001.

    Article  PubMed  CAS  Google Scholar 

  • Scheringer, M., F. Wegmann, K. Fenner & K. Hungerbuhler, 2000. Investigation of the cold condensation of persistent organic pollutants with a global multimedia fate model. Environmental Science and Technology 34: 1842–1850.

    Article  CAS  Google Scholar 

  • Schumm, S. A., 1977. The Fluvial System. Wiley-Interscience, New York.

    Google Scholar 

  • Schwarzenbach, R. P., P. M. Gschwend & D. M. Imboden, 1993. Environmental Organic Chemistry. John Wiley & Sons, New York.

    Google Scholar 

  • Scorecard, 2005. The pollution information site. http://www.scorecard.org.

  • Scurlock, J. M. O., G. P. Asner & S. T. Gower, 2001. Worldwide Historical Estimates of Leaf Area Index, 1932–2000. Oak Ridge National Laboratory, Oak Ridge.

    Google Scholar 

  • Severinsen, M. & T. Jager, 1998. Modelling the influence of terrestrial vegetation on the environmental fate of xenobiotics. Chemosphere 37: 41–62.

    Article  CAS  Google Scholar 

  • Stroebe, M., M. Scheringer & K. Hungerbühler, 2004. Measures of overall persistence and the temporal remote state. Environmental Science and Technology 38: 5665–5673.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, N., K. Murasawa, T. Sakurai, K. Nansai, K. Matsuhashi, Y. Moriguchi, K. Tanabe, O. Nakasugi & M. Morita, 2004. Geo-referenced multimedia environmental fate model (G-CIEMS): model formulation and comparison to the generic model and monitoring approaches. Environmental Science and Technology 38: 5682–5693.

    Article  PubMed  CAS  Google Scholar 

  • Tiktak, A., D. de Nie, T. van der Linden & R. Kruijne, 2002. Modelling the leaching and drainage of pesticides in the Netherlands: theGeoPEARLmodel.Agronomie 22: 373–387.

    Article  Google Scholar 

  • Toose, L., D. G. Woodfine, M. MacLeod, D. Mackay & J. Gouin, 2004. BETR-World: a geographically explicit model of chemical fate: application to transport of alpha-HCH to the Arctic. Environmental Pollution 128: 223–240.

    Article  PubMed  CAS  Google Scholar 

  • Trapp, S., 1996. Querprofile, WQ-, QW-, WB-und Wu-Regressionen, Einleiterstandorte fü r den Rhein. Universitä t Osnabrü ck, Institut fü r Umweltsystemforschung, Osnabrü ck.

    Google Scholar 

  • Trapp, S. & M. Matthies, 1996. Generic one compartment model for uptake of organic chemicals by foliar vegetation. Environmental Science and Technology 30: 360.

    Google Scholar 

  • US-EPA., 2002. TRIM.FaTE Technical Support Document. Volume 1: Description of Module. US-Environmental Protection Agency, North Carolina.

    Google Scholar 

  • Vermeire, T. G., D. T. Jager, B. Bussian, J. Devillers, K. den Haan, B. Hansen, I. Lundberg, H. Niessen, S. Robertson, H. Tyle & P. T. J. van der Zandt, 1997. European Union System for the Evaluation of Substances (EUSES). Principles and structure. Chemosphere 34: 1823–1836.

    Article  PubMed  CAS  Google Scholar 

  • Vermeire, T., M. Rikken, L. Attias, P. Boccardi, G. Boeije, D. Brooke, J. de Bruijn, M. Comber, B. Dolan, S. Fischer, G. Heinemeyer, V. Koch, J. Lijzen, B. Müller, R. Murray-Smith & J. Tadeo, 2005. European union system for the evaluation of substances: the second version. Chemosphere 59: 473–485.

    Article  PubMed  CAS  Google Scholar 

  • Webster, E., D. Mackay, A. Di Guardo, D. Kane & D. Woodfine, 2004. Regional differences in chemical fate model outcome. Chemosphere 55: 1361–1376.

    Article  PubMed  CAS  Google Scholar 

  • Woodfine, D. G., M. MacLeod, D. Mackay & J. R. Brimacombe, 2001. Development of continental scale multimedia contaminant fate models: integrating GIS. Environmental Science and Pollution Research 8: 164–172.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, X. B., R. E. Dickinson, A. Walker, M. Shaikh, R. S. DeFries & J. G. Qi, 2000. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. Journal of Applied Meteorology 39: 826–839.

    Article  Google Scholar 

  • Zhang, Q. O., J. C. Crittenden, D. Shonnard & J. R. Mihelcic, 2003. Development and evaluation of an environmental multimedia fate model CHEMGL for the Great Lakes region. Chemosphere 50: 1377–1397

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer2006

About this chapter

Cite this chapter

Hollander, A., Huijbregts, M.A.J., Ragas, A.M.J., van de Meent, D. (2006). BasinBox: a generic multimedia fate model for predicting the fate of chemicals in river catchments. In: Leuven, R.S.E.W., Ragas, A.M.J., Smits, A.J.M., van der Velde, G. (eds) Living Rivers: Trends and Challenges in Science and Management. Developments in Hydrobiology, vol 187. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5367-3_2

Download citation

Publish with us

Policies and ethics