Flood detention, nature development and water quality along the lowland river Sava, Croatia

  • M. J. Baptist
  • M. Haasnoot
  • P. Cornelissen
  • J. Icke
  • G. van der Wedden
  • H. J. de Vriend
  • G. Gugic
Part of the Developments in Hydrobiology book series (DIHY, volume 187)


The construction or designation of detention areas along lowland rivers is considered along many European rivers. Since Croatia accommodates large detention areas, both natural (e.g., Mokro Polje) and controlled (Lonjsko Polje), it serves as an excellent example for planned detention areas elsewhere in Europe. This modelling study focuses on the controlled detention area of Lonjsko Polje. The flooding characteristics of the area are assessed in combination with the vegetation development and the transport and storage of sediment and phosphorus. Results of the modelling show that it is not so much the intake capacity that determines the flood duration time of a detention area, but the drainage capacity. A too long inundation duration following a flood event is shown to lead to major shifts in the vegetation composition. The results further indicate that about 30% of the sediment and adsorbed phosphorus that enters the detention area during an extreme (1:100 years) flood is retained within the area; this is about 10% of the total sediment and adsorbed phosphorus load of the Sava. Results of this study can be used to properly design and manage detention areas along lowland rivers.

Key words

ecohydrology hydrologic modelling nature management phosphorus storage sediment storage vegetation succession 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asselman, N. E. M., 2000. Fitting and interpretation of sediment rating curves. Journal of Hydrology 234: 228–248.CrossRefGoogle Scholar
  2. Asselman, N. E. M. & M. van Wijngaarden, 2002. Development and application of a 1D floodplain sedimentation model for the River Rhine in The Netherlands. Journal of Hydrology 268: 127–142.CrossRefGoogle Scholar
  3. Baptist, M. J., W. E. Penning, H. Duel, A. J. M. Smits, G. W. Geerling, G. E. M. van der Lee & J. S. L. van Alphen, 2004. Assessment of cyclic floodplain rejuvenation on flood levels and biodiversity in the Rhine River. River Research and Applications 20: 285–297.CrossRefGoogle Scholar
  4. Blom, C. W. P. M., G. M. Bögemann & P. Laan, 1990. Adaptations to flooding in plants from river areas. Aquatic Botany 38: 29–47.CrossRefGoogle Scholar
  5. Brock, T. C. M., G. van der Velde & H. M. van de Steeg, 1987. The effects of extreme water level fluctuations on the wetland vegetation of a nymphaeid-dominated oxbow lake in the Netherlands. Archiv für Hydrobiologie Beihefte, Ergebnisse der Limnologie 27: 57–73.Google Scholar
  6. Brundić, D., D. Barbalic, V. Omerbegović, M. Schneider-Jacoby & Z. Tusić, 2001. Alluvial wetlands preservation in Croatia; the experience of the Central Sava Basin flood control system. In Nijland, H. J. & M. J. R. Cals (eds), River Restoration in Europe; Practical approaches. Proceedings from the conference on River Restoration, Wageningen, The Netherlands,2000. RIZA report 2001.023, Lelystad: 109–118.Google Scholar
  7. Crawford, R. M. M., 1992. Oxygen availability as an ecological limit to plant distribution. Advances in Ecological Research 23: 93–185.Google Scholar
  8. Crawford, R. M. M. & R. Brändle, 1996. Oxygen deprivation stress in a changing environment. Journal of Experimental Botany 47: 145–159.CrossRefGoogle Scholar
  9. CW, 2001. Environmental impact assessment of the Sava River flood control project. Croatian Waters, Zagreb.Google Scholar
  10. Danubs, 2004. Nutrient management in the Danube Basin and its impact on the Black Sea. Vienna, University of Technology, Institute for Water Quality and Waste Management. daNUbs, Deliverable D1.2 “Data set of results of additional sampling”, contract EVK1-CT-2000-00051, EU-EESD Programme.Google Scholar
  11. Dister, E., 1980. Geobotanische Untersuchungen in der Hessischen Rheinaue als Grundlage für die Naturschutzarbeit. Ph.D. Dissertation, University of Göttingen.Google Scholar
  12. Filipovic, M., D. Geres, M. Vranjes & V. Jovic, 2000. Flood control planning for the Sava river basin in Croatia. Proceedings of the Hydroinformatics 2000 Symposium, Cedar Rapids, Iowa, USA, CD-ROM.Google Scholar
  13. Gugić, G. & G. Ćosić-Flajsig, 2004. A development plan for Lonjsko Polje Nature Park; Ways towards integrated river basin management. Third European Conference on River Restoration, Zagreb, Croatia, 17–21 May 2004. Croatian Waters, Zagreb: 149–154.Google Scholar
  14. Gurnell, A. M., 1997. The hydrological and geomorphological significance of forested floodplains. Global Ecology and Biogeography Letters 6: 219–229.CrossRefGoogle Scholar
  15. Heath, M. F. & M. I. Evans (eds), 2000. Important Bird Areas in Europe: Priority sites for conservation. Cambridge, UK, Birdlife International. Birdlife Conservation Series 8: 137–145.Google Scholar
  16. Hohensinner, S., H. Habersack, M. Jungwirth & G. Zauner, 2004. Reconstruction of the characteristics of natural alluvial river-floodplain system and hydromorphological changes following human modification: The Danube River (1812–1991). River Research and Applications 20: 24–41.CrossRefGoogle Scholar
  17. Klijn, F., J. Karsemeijer & S. van Rooij, 2004. How much natural development does a room-for-rivers policy allow for? Landscape 21: 29–44 (in Dutch).Google Scholar
  18. Krone, R. B., 1962. Flume studies of the transport of sediments in estuarial shoaling processes. Final report. Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkeley.Google Scholar
  19. Löffl, C., 1999. Multitemporäre Satellitenbild-Auswertung zur Ermittlung von Vegetationseinheiten in den Save-Auen (Kroatien) und Ableitung von landschafts-ökologischen Veränderungen mit Hilfe eines Geographischen Informationssystems (GIS). Diplomarbeit Philosophische Fakultät der Universität Regensburg.Google Scholar
  20. Middelkoop, H. & N. E. M. Asselman, 1998. Spatial variability of floodplain sedimentation at the event scale in the Rhine-Meuse delta, The Netherlands. Earth Surface Processes and Landforms 23: 561–573.CrossRefGoogle Scholar
  21. Partheniades, E., 1962. A study of erosion and deposition of cohesive soils in salt water. Ph.D. thesis, University of California, Berkeley.Google Scholar
  22. Pérez, J. M. S., M. Tré molières, N. Takatert, P. Ackerer, A. Eichhorn & G. Maire, 1999. Quantification of nitrate removal by a flooded alluvial zone in the Ill floodplain (Eastern France). Hydrobiologia 410: 185–193.CrossRefGoogle Scholar
  23. Peters, B., 2002. Successie van natuurlijke uiterwaardlandschappen. Nijmegen University, Bureau Drift, Nijmegen (in Dutch).Google Scholar
  24. Petriĉec, M., M. Filipović, L. Kratofil, S. Šurlan & Z. Tusić, 2004. Toward integrated water management in the Middle Sava Basin. Third European Conference on River Restoration, Zagreb, Croatia, 17–21 May 2004. Croatian Waters, Zagreb: 279–287.Google Scholar
  25. Pollock, M. M., R. J. Naiman & T. Hanley, 1998. Plant species richness in riparian wetlands-a test of the biodiversity theory. Ecology 79: 94–105.Google Scholar
  26. Postma, L., P. M. A. Boderie, J. A. G. van Gils & J. K. L. van Beek, 2003. Component software systems for surface water simulation. International conference on Computational Science 2003, June 2-4, Melbourne, Australia & St. Petersburg, Russian Federation, Springer-Verlag GmbH: 649–658.Google Scholar
  27. Rademakers, J. G. M. & H. P. Wolfert, 1994. The River-Ecotope-System: a classification of ecologically relevant spatial units for planning and policy studies in river floodplains. RIZA, Lelystad (in Dutch).Google Scholar
  28. Sivakumar, B. & W. W. Wallender, 2005. Predictability of river flow and suspended sediment transport in the Mississippi River basin: a non-linear deterministic approach. Earth Surface Processes and Landforms 30: 665–677.CrossRefGoogle Scholar
  29. Sweet, R. J., A. P. Nicholas, D. E. Walling & X. Fang, 2003. Morphological controls on medium-term sedimentation rates on British lowland river floodplains. Hydrobiologia 494: 177–183.CrossRefGoogle Scholar
  30. UNDO, 1972. Study for regulation and management of the Sava River in Yugoslavia. United Nations Development Office, Consortium Polytechna-Hydroprojekt-Carlo Lotti & C. Prag-Roma.Google Scholar
  31. Van der Lee, G. E. M., H. Olde Venterink & N. E. M. Asselman, 2004. Nutrient retention in floodplains of the Rhine distributaries in The Netherlands. River Research and Applications 20: 315–325.CrossRefGoogle Scholar
  32. Van der Meijden, R., 1996. Heukels’ Flora Van Nederland, Wolters-Noordhoff, Groningen.Google Scholar
  33. Van den Brink, F. W. B., M. M. J. Maenen, G. van der Velde & A. bij de Vaate, 1991. The (semi-)aquatic vegetation of still waters within the floodplains of the rivers Rhine and Meuse in The Netherlands: historical changes and the role of inundation. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 24: 2693–2699.Google Scholar
  34. Van den Brink, F. W. B., G. van der Velde, W. W. Bosman & H. Coops, 1995. Effects of substrate parameters on growth responses of eight helophyte species in relation to flooding. Aquatic Botany 50: 79–97.CrossRefGoogle Scholar
  35. Van de Steeg, H. M. & C. W. P. M. Blom, 1998. Impact of hydrology on floodplain vegetation in the Lower Rhine system: implication for nature conservation and nature development. In Nienhuis, P. H., R. S. E. W. Leuven & A. M. J. Ragas (eds), New concepts for sustainable management of river basins. Backhuys Publishers, Leiden: 131–144.Google Scholar
  36. Van Eck, W. H. J. M., H. M. van de Steeg, C. W. P. M. Blom & H. de Kroon, 2004. Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. Oikos 107: 393–405.CrossRefGoogle Scholar
  37. Van Geest, G., 2005. Macrophyte succession in floodplain lakes. Spatio-temporal patterns in relation to hydrology, lake morphology and management. Ph.D. thesis, Wageningen University, Wageningen.Google Scholar
  38. Van Gils, J. A. G. & J. Bendow, 2000. The Danube water quality model and its role in the Danube River basin pollution reduction programme. XX-th Conference of the Danubian Countries on Hydrological Forecasting and the Hydrological Basis of Water Management. Slovak Committee for Hydrology and Slovak Hydrometeorological Institute, Bratislava, CD-ROM.Google Scholar
  39. Van Splunder, I., 1998. Floodplain forest recovery: softwoord forest development in relation to hydrology, riverbank morphology and management. Ph.D. thesis, University of Nijmegen, Nijmegen.Google Scholar
  40. Van Stokkom, H. T. C., A. J. M. Smits & R. S. E. W. Leuven, 2005. Flood defense in The Netherlands; a new era, a new approach. Water International 30: 76–87.CrossRefGoogle Scholar
  41. Van Velzen, E. H., P. Jesse, P. Cornelissen & H. Coops, 2003. Hydraulic resistance of floodplain vegetation, Part 2 background document. Rijkswaterstaat RIZA, RIZA document 2002.141x. RIZA, Lelystad (in Dutch).Google Scholar
  42. Vartapetian, B. B. & M. B. Jackson, 1997. Plant adaptation to anaerobic stress. Annals of Botany 9(Suppl. A): 3–20.Google Scholar
  43. Vervuren, P. J. A., C. W. P. M. Blom & H. D. de Kroon, 2003. Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. Journal of Ecology 91: 135–146.CrossRefGoogle Scholar
  44. Verwey A., 2001. Latest developments in floodplain modelling-1D/2D integration. Proceedings of the 6th Conference on Hydraulics in Civil Engineering. Hobart, Tasmania.Google Scholar
  45. Walling, D. E. & P. N. Owens, 2003. The role of overbank floodplain sedimentation in catchment contaminant budgets. Hydrobiologia 494: 83–91.CrossRefGoogle Scholar
  46. Walling, D. E., P. N. Owens & G. J. L. Leeks, 1998. The role of channel and floodplain storage in the suspended sediment budget of the River Ouse, Yorkshire, UK. Geomorphology 22: 225–242.CrossRefGoogle Scholar
  47. Wattendorf, P., K. Blauth-Baehr & O. Ehrmann, 2000. Gehalte von Schwermetallen und Polycyclischen aromatischen Kohlenwasserstoffen in Böden des Naturparks Lonjsko Polje (Kroatien) in Abhängigkeit von Ü berflutungen durch die Sava. International Association for Danube Research 33: 395–402.Google Scholar

Copyright information

© Springer2006 2006

Authors and Affiliations

  • M. J. Baptist
    • 1
    • 2
  • M. Haasnoot
    • 1
  • P. Cornelissen
    • 3
  • J. Icke
    • 1
  • G. van der Wedden
    • 4
  • H. J. de Vriend
    • 4
  • G. Gugic
    • 5
  1. 1.WLDelft HydraulicsDelftThe Netherlands
  2. 2.Faculty of Civil Engineering and Geosciences, Water Resources SectionDelft University of TechnologyDelftThe Netherlands
  3. 3.Rijkswaterstaat, RIZALelystadThe Netherlands
  4. 4.Faculty of Civil Engineering and Geosciences, Hydraulic Engineering SectionDelft University of TechnologyDelftThe Netherlands
  5. 5.JasenovacCroatia

Personalised recommendations