Advertisement

Biological traits successfully predict the effects of restoration management on macroinvertebrates in shallow softwater lakes

  • H. H. van Kleef
  • G. A. van Duinen
  • W. C. E. P. Verberk
  • H. Esselink
  • R. S. E. W. Leuven
  • G. van der Velde
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 187)

Abstract

Many shallow softwater lakes are being affected by eutrophication and acidification. In these small lakes decaying organic material usually accumulates and characteristic plant and animal species disappear. In many degraded lakes organic matter and macrophytes are being removed in order to restore the lakes to their original state. To assess the effects of restoration management in softwater lakes on aquatic macro-invertebrates, changes in the species assemblages were studied in four degraded lakes in the Netherlands undergoing restoration measures. The degraded lakes still harboured species characteristic of pristine softwaters. However, most of these species were not recorded after restoration measures were taken. Species’ densities declined dramatically during the execution of restoration measures. Swimming and abundant species were more likely to survive the restoration measures than other species. The first years after restoration, the lakes did not meet the habitat requirements for a number of species. Species requiring vegetation for ovipositioning, animal food sources and swards of vegetation as habitat declined. Because recolonization is expected to be restricted, it is recommended to ensure the survival of relict populations when taking measures to restore degraded softwater lakes. This may be achieved by phasing restoration measures in space and time, hereby minimizing mortality during the execution of restoration measures and by preserving habitat conditions required by characteristic species.

Key words

acidification bottleneck degradation eutrophication life cycle restoration ecology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arts, G. H. P., 2000. Natuurlijke levensgemeenschappen van de Nederlandse binnenwateren deel 13, Vennen. Achtergronddocument bij het „Handboek Natuurdoeltypen in Nederland“. Expertisecentrum LNV, Ministerie van Landbouw, Natuurbeheer en Visserij, Ede-Wageningen (in Dutch).Google Scholar
  2. Arts, G. H. P. & R. S. E. W. Leuven, 1988. Floristic changes in shallow softwaters in relation to underlying environmental factors. Freshwater Biology 20: 97–111.CrossRefGoogle Scholar
  3. Bloemendaal, F. H. J. L. & J. G. M. Roelofs (eds), 1988. Waterplanten en waterkwaliteit. Stichting uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging, Utrecht (in Dutch).Google Scholar
  4. Boukal, D. S. & L. Berec, 2002. Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters. Journal of Theoretical Biology 218: 375–394.PubMedCrossRefGoogle Scholar
  5. Brouwer, E., 2001. Restoration of atlantic softwater lakes and perspectives for characteristic macrophytes. PhD thesis, University of Nijmegen, Nijmegen.Google Scholar
  6. Brouwer, E. & J. G. M. Roelofs, 2001. Degraded softwater lakes: possibilities for restoration. Restoration Ecology 9: 155–166.CrossRefGoogle Scholar
  7. Charlesworth, D. & B. Charlesworth, 1987. Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics 18: 237–368.CrossRefGoogle Scholar
  8. Engen, S., R. Lande & B. E. Saether, 2003. Demographic stochasticity and allee effects in populations with two sexes. Ecology 84: 2378–2386.CrossRefGoogle Scholar
  9. Foggo, A., S. D. Rundle & D. T. Bilton, 2003. The net result: evaluating species richness extrapolation techniques for littoral pond invertebrates. Freshwater Biology 48: 1756–1764.CrossRefGoogle Scholar
  10. Haines, T. A., 1981. Acidic precipitation and its consequences for ecosystems: a review. Transactions of the American Fisheries Society 110: 669–707.CrossRefGoogle Scholar
  11. Henrikson, L., J. B. Olofsson & H. G. Oscarson, 1982. The impact of acidification on Chironomidae (Diptera) as indicated by subfossil stratification. Hydrobiologia 86: 223–229.CrossRefGoogle Scholar
  12. Hill, M. O., 1979. TWINSPAN-a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, New York.Google Scholar
  13. Jackson, D. J., 1956. The capacity for flight of certain water beetles and its bearing on their origin on the western Scottish Isles. Proceedings of the Linnean Society of London, London 167: 76–96.Google Scholar
  14. Juget, J. & M. Lafont, 1994. Theoretical habitat templets, species traits, and species richness: aquatic oligochaetes in the upper Rhone River and its floodplain. Freshwater Biology 31: 327–340.CrossRefGoogle Scholar
  15. Kerfoot, W. C., 1982. A question of taste: crypsis and warning coloration in freshwater zooplankton communities. Ecology 63: 538–554.CrossRefGoogle Scholar
  16. Lamers, L. P. M., S. M. E. van Roozendaal & J. G. M. Roelofs, 1998. Acidification of freshwater wetlands: combined effects of non-airborne sulfur pollution and desiccation. Water, Air and Soil Pollution 105: 95–106.CrossRefGoogle Scholar
  17. Lamers, L. P. M., A. J. P. Smolders & J. G. M. Roelofs, 2002. The restoration of fens in the Netherlands. Hydrobiologia 478: 107–130.CrossRefGoogle Scholar
  18. Leuven, R. S. E. W., 1988. Impact of acidification on aquatic ecosystems in the Netherlands. PhD Thesis, University of Nijmegen, Nijmegen.Google Scholar
  19. Leuven, R. S. E. W., G. van der Velde, J. A. M. Vanhemelrijk & R. L. E. Eeken, 1986. Impact of acidification on the distribution of aquatic insects in lentic softwaters. Proceedings of the 3rd European Congress of Entomology, Dutch Entomological Society, Amsterdam, 103–106.Google Scholar
  20. Leuven, R. S. E. W., J. A. van der Velden, J. A. M. Vanhemelrijk & G. van der Velde, 1987. Impact of acidification on chironomid communities in poorly buffered waters in the Netherlands. Entomologica Scandinavica Supplement 29: 269–280.Google Scholar
  21. Menges, E. S., 1991. The application of minimum viable population theory to plants. In Falk, D. & K. Holsinger (eds) Genetics and Conservation of Rare Plants. Oxford University Press, New York, 45–61.Google Scholar
  22. Nienhuis, P. H., J. P. Bakker, A. P. Grootjans, R. D. Gulati & V. N. de Jonge, 2002. The state of the art of aquatic and semi-aquatic ecological restoration projects in the Netherlands. Hydrobiologia 478: 219–233.CrossRefGoogle Scholar
  23. Poff, N. L., 1997. Landscape filters and species traits: towards a mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.CrossRefGoogle Scholar
  24. Ravera, O., 1986. The ecological aspects of acid deposition. Experientia 42: 329–588.CrossRefGoogle Scholar
  25. Reed, D. H., J. J. O′Grady, B. W. Brook, J. D. Ballou & R. Frankham, 2003. Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biological Conservation 113: 23–34.CrossRefGoogle Scholar
  26. Resh, V. H., A. G. Hildrew, B. Statzner & C. R. Townsend, 1994. Theoretical habitat templets, species traits and species richness: a synthesis of long-term ecological research on the upper Rhone River in the context of concurrently developed theory. Freshwater Biology 31: 539–554.CrossRefGoogle Scholar
  27. Richoux, P., 1994. Theoretical habitat templets, species traits, and species richness: aquatic Coleoptera in the upper Rhone River and its floodplain. Freshwater Biology 31: 377–395.CrossRefGoogle Scholar
  28. Roelofs, J. G. M., 1983. Impact of acidification and eutrophication on macrophyte communities in softwaters in the Netherlands. I. Field observations. Aquatic Botany 17: 139–155.CrossRefGoogle Scholar
  29. Rohani, P., R. M. May & M. P. Hassell, 1996. Metapopulations and equilibrium stability: the effects of spatial structure. Journal of Theoretical Biology 181: 97–109.PubMedCrossRefGoogle Scholar
  30. Scarsbrook, M. R. & C. R. Townsend, 1993. Stream community structure in relation to spatial and temporal variation: a habitat templet study of two contrasting New Zealand streams. Freshwater Biology 29: 395–410.CrossRefGoogle Scholar
  31. Smits, M. J. A., G. A. van Duinen, J. G. Bosman, A. M. T. Brock, J. Javois, J. T. Kuper, T. M. P. Peeters, M. A. J. Peeters & H. Esselink, 2002. Species richness in a species poor system: aquatic macroinvertebrates of Nigula Raba, an intact raised bog system in Estonia. Proceedings of the international Peat Symposium, Pärnu, 283–291.Google Scholar
  32. Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 337–365.Google Scholar
  33. Tachet, H., P. Usseglio-Polatera & C. Roux, 1994. Theoretical habitat templets, species traits, and species richness: Trichoptera in the upper Rhone River and its floodplain. Freshwater Biology 31: 397–415.CrossRefGoogle Scholar
  34. Ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4). Microcomputer power, Ithaca, New York.Google Scholar
  35. Tonn, W. M., 1990. Climate change and fish communities: a conceptual framework. Transactions of the American Fisheries Society 119: 337–352.CrossRefGoogle Scholar
  36. Usseglio-Polatera, P., 1994. Theoretical habitat templets, species traits, and species richness: aquatic insects in the upper Rhone River and its floodplain. Freshwater Biology 31: 417–437.CrossRefGoogle Scholar
  37. Van der Hammen, H., T. H. L. Claassen & P. F. M. Verdonschot, 1984. Handleiding voor hydrobiologische milieu-inventarisatie. Interprovinciale Ambtelijke Werkgroep Milieu-inventarisatie, subwerkgroep Hydrobiologie, Haarlem (in Dutch).Google Scholar
  38. Van Duinen, G. A., A. M. T. Brock, J. T. Kuper, R. S. E. W. Leuven, T. M. P. Peeters, J. G. M. Roelofs, G. van der Velde, W. C. E. P. Verberk & H. Esselink, 2003. Do restauration measures rehabilitate fauna diversity in raised bogs? A comparative study on aquatic macroinvertebrates. Wetlands Ecology and Management 11: 447–459.CrossRefGoogle Scholar
  39. Van Kleef, H. & H. Esselink, 2004a. Monitoring van abiotiek, vegetatie, dansmuggen en kokerjuffers in gerestaureerde zwakgebufferde oppervlaktewateren. Kolonisatie van diersoorten. Expertisecentrum LNV, Ministerie van Landbouw, Natuur en Voedselkwaliteit, Ede-Wageningen (in Dutch).Google Scholar
  40. Van Kleef, H. & H. Esselink, 2004b. Analyse van de effecten van herstelmaatregelen op watermacrofauna in zwakgebufferde oppervlaktewateren. Een vergelijkend onderzoek in vier vennen waar herstelmaatregelen zijn uitgevoerd. Expertisecentrum LNV, Ministerie van Landbouw, Natuur en Voedselkwaliteit, Ede-Wageningen (in Dutch).Google Scholar
  41. Van Kleef, H. & H. Esselink, 2005. Aquatic Macroinvertebrates in Deteriorated Shallow Softwater Lakes Under Going Restoration. Their Abundances and Biological Traits. Bargerveen Foundation, Department of Environmental Science, Radboud University Nijmegen, Nijmegen.Google Scholar
  42. Verberk, W. C. E. P., G. A. van Duinen, T. M. J. Peeters & H. Esselink, 2001. Importance of variation in watertypes for water beetle fauna (Coleoptera) in Korenburgerveen, a bog remnant in the Netherlands. Proceedings Experimental and Applied Entomology, Dutch Entomological Society, Amsterdam 12: 121–128.Google Scholar
  43. Verberk, W. C. E. P., A. M. T. Brock, G. A. van Duinen M. van Es, J. T. Kuper, T. M. J. Peeters, M. J. A. Smits L. Timan & H. Esselink, 2002. Seasonal and spatial patterns in macroinvertebrate assemblage in a heterogeneous landscape. Proceedings Experimental and Applied Entomology, Dutch Entomological Society, Amsterdam 13: 35–43.Google Scholar

Copyright information

© Springer2006 2006

Authors and Affiliations

  • H. H. van Kleef
    • 1
    • 2
  • G. A. van Duinen
    • 1
    • 2
  • W. C. E. P. Verberk
    • 1
    • 3
  • H. Esselink
    • 1
    • 3
  • R. S. E. W. Leuven
    • 2
  • G. van der Velde
    • 3
  1. 1.Bargerveen FoundationNijmegenThe Netherlands
  2. 2.Department of Environmental ScienceInstitute for Wetland and Water Research, Radboud University NijmegenNijmegenThe Netherlands
  3. 3.Department of Animal Ecology and EcophysiologyInstitute for Wetland and Water Research, Radboud University NijmegenNijmegenThe Netherlands

Personalised recommendations