Effects of rewetting measures in Dutch raised bog remnants on assemblages of aquatic Rotifera and microcrustaceans

  • G. A. van Duinen
  • Y. Zhuge
  • W. C. E. P. Verberk
  • A. M. T. Brock
  • H. H. van Kleef
  • R. S. E. W. Leuven
  • G. van der Velde
  • H. Esselink
Part of the Developments in Hydrobiology book series (DIHY, volume 187)


Species differ in their life cycle, habitat demands and dispersal capacity. Consequently different species or species groups may respond differently to restoration measures. To evaluate effects of restoration measures in raised bog remnants on aquatic microinvertebrates, species assemblages of Rotifera and microcrustaceans were sampled in 10 rewetted and 10 non-rewetted sites, situated in 7 Dutch raised bog remnants. A total of 129 species (Rotifera 108, Cladocera 15, Copepoda 6 species) were found. The species assemblages, total numbers of species and numbers of characteristic raised bog species did not differ between the 10 rewetted and 10 non-rewetted sites. The dominant pattern in the variation in microinvertebrate assemblages could be explained by the presence or absence of open water and variation in physico-chemical variables of surface water and organic matter. Furthermore, the species assemblages of water bodies situated in the same area were on average more similar to each other than to assemblages from other areas. These differences between areas may be due to differences in environmental conditions of water bodies, and possibly also to differences in the local species pool and the subsequent immigration sequence of species. We conclude that, in contrast to earlier findings on aquatic macroinvertebrates, populations of microinvertebrate species, including characteristic species, can either persist in the raised bog remnants during the process of rewetting or (re-)establish within a relatively short period of time (less than about 5 years).

Key words

Cladocera Copepoda colonisation dispersal multivariate analysis raised bog peatland Rotifera restoration species diversity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bateman, L. E. & C. C. Davis, 1980. The rotifera of hummockhollow formations in a poor fen in Newfoundland. Internationale Revue der gesamten Hydrobiologie 65: 127–153.CrossRefGoogle Scholar
  2. Belyea, L. R., 1996. Separating the effects of litter quality and microenvironment on decomposition rates in patterned peatland. Oikos 77: 529–539.CrossRefGoogle Scholar
  3. Bērziņš, B. & B. Pejler, 1987. Rotifer occurrence in relation to pH. Hydrobiologia 147: 107–116.CrossRefGoogle Scholar
  4. Błędzki, L. A. & A. M. Ellison, 2003. Diversity of rotifers from northeastern U.S.A. bogs with new species records for North America and New England. Hydrobiologia 497: 53–62.CrossRefGoogle Scholar
  5. Buttler, A., B. G. Warner, P. Grosvernier & Y. Matthey, 1996. Vertical patterns of testate amoebae (Protozoa: Rhizopoda) and peat-forming vegetation on cutover bogs in the Jura, Switzerland. New Phytologist 134: 371–382.CrossRefGoogle Scholar
  6. Cáceres, C. E. & D. A. Soluk, 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.CrossRefGoogle Scholar
  7. Cohen, G. M. & J. B. Shurin, 2003. Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos 103: 603–617.CrossRefGoogle Scholar
  8. De Goeij, A. A. M., 1987. Een onderzoek naar het voorkomen en de verspreiding van aquatische macro-en microfauna in de Ierse hoogvenen. Deel 2, Microfauna. Doctoraalverslag 221. Laboratorium voor Aquatische Oecologie, Laboratorium voor Botanie II. Katholieke Universiteit, Nijmegen (in Dutch).Google Scholar
  9. De Smet, W. H., 1996. The Proalidae (Rotifera, Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 9. SPB Academic Publishing, The Hague.Google Scholar
  10. De Smet, W. H., 1997. The Dicranophoridae (Rotifera, Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 12. SPB Academic Publishing, The Hague.Google Scholar
  11. Donner, J., 1965. Ordnung Bdelloidea (Rotatoria, Rädertiere). Akademie Verlag, Berlin (in German).Google Scholar
  12. Duggan, I. C., J. D. Green & R. J. Shiel, 2002. Distribution of rotifer assemblages in North Island, New Zealand, lakes: relationships to environmental and historical factors. Freshwater Biology 47: 195–206.CrossRefGoogle Scholar
  13. Einsle, U., 1993. Calanoida und Cyclopoida (Crustacea, Copepoda), Süßwasserfauna von Mitteleuropa. Gustav Fischer Verlag, Stuttgart (in German).Google Scholar
  14. Einsle, U., 1996. Copepoda: Cyclopoida, Genera Cyclops, Megacyclops, Acanthocyclops. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 10. SPB Academic Publishing, The Hague.Google Scholar
  15. Fairchild, G. W., J. Cruz & A. M. Faulds, 2003. Microhabitat and landscape influences on aquatic beetle assemblages in a cluster of temporary and permanent ponds. Journal of the North American Benthological Society 22: 224–240.CrossRefGoogle Scholar
  16. Flößner, D., 2000. Die Haplopoda und Cladocera Mitteleuropas. Backhuys Publishers, Leiden (In German).Google Scholar
  17. Galewski, K., 1971. A study on morphobiotic adaptations of European species of the Dytiscidae (Coleoptera). Polski Pismo entomologiczne 41: 487–702.Google Scholar
  18. Grasshoff, H. & H. Johanssen, 1977. A new sensitive method for determination of ammonia in seawater. Water Research 2: 516.Google Scholar
  19. Henriksen, A., 1965. An automated method for determining low-level concentrations of phosphate in fresh and saline waters. Analyst 90: 29–34.CrossRefGoogle Scholar
  20. Jackson, D., 1952. Observations on the capacity for flight of water beetles. Proceedings of the Linnean Society of London/ Zoology 43: 18–42.Google Scholar
  21. Jenkins, D. G. & A. L. Buikema, 1998. Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecological Monographs 68: 421–443.CrossRefGoogle Scholar
  22. Jersabek, C., 1995. Distribution and ecology of rotifer communities in high-altitude alpine sites-a multivariate approach. Hydrobiologia 313/314: 75–89.Google Scholar
  23. Kamphake, L. H., S. A. Hannah & J. M. Cohen, 1967. Automated analysis for nitrate by hydrazine reduction. Water Research 1: 206.Google Scholar
  24. Kok, C. J. & B. J. van der Laar, 1991. Influence of pH and buffering capacity on the decomposition of Nymphaea alba L. detritus in laboratory experiments: a possible explanation for the inhibition of decomposition at low alkalinity. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 2689–2692.Google Scholar
  25. Kok, C. J., C. H. J. Hof, J. P. M. Lenssen & G. van der Velde, 1992. The influence of pH on concentrations of protein and phenolics and resource quality of decomposing floating leaf material of Nymphaea alba L. (Nymphaeaceae) for the detritivore Asellus aquaticus (L.). Oecologia 91: 229–234.CrossRefGoogle Scholar
  26. Kok, C. J. & G. van der Velde, 1994. Decomposition and invertebrate colonization of aquatic and terrestrial leaf material in alkaline and acid still water. Freshwater Biology 31: 65–75.CrossRefGoogle Scholar
  27. Koste, W., 1978. Rotatoria. Die Rädertiere, Mitteleuropa. Überordnung Monogononta. Gebrüder Borntraeger Berlin, Stuttgart (in German).Google Scholar
  28. Longcore, T., 2003. Terrestrial Arthropods as indicators of ecological restoration success in coastal sage scrub (California, U.S.A.). Restoration Ecology 11: 397–409.CrossRefGoogle Scholar
  29. Myers, F. J., 1931. The distribution of Rotifera on Mt. Desert Island. American Museum Novitates 494: 1–12.Google Scholar
  30. Nogrady, T., R. Wallace & T. Snell, 1993. Rotifera, Biology, Ecology and Systematics. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 4. SPB Academic Publishing, The Hague.Google Scholar
  31. Nogrady, T. & R. Pourriot, 1995. The Notommatidae (Rotifera, Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 6. SPB Academic Publishing, The Hague.Google Scholar
  32. O′Brien, J., 1962. Automatic analysis of chlorides in sewage wastes. Engineering 33: 670–672.Google Scholar
  33. Pejler, B., 1983. Zoopanktonic indicators of trophy and their food. Hydrobiologia 101: 111–114.CrossRefGoogle Scholar
  34. Pejler, B. & B. Bērziņš, 1989. Rotifer occurrence and trophic degree. Hydrobiologia 182: 171–180.CrossRefGoogle Scholar
  35. Pejler, B. & B. Bērziņš, 1993a. On the ecology of mire rotifers. Limnologica 23: 295–300.Google Scholar
  36. Pejler, B. & B. Bērziņš, 1993b. On relation to substrate in sessile rotifers. Hydrobiologia 259: 121–124.CrossRefGoogle Scholar
  37. Pejler, B. & B. Bērziņš, 1993c. On the ecology of Trichocercidae (Rotifera). Hydrobiologia 263: 55–59.CrossRefGoogle Scholar
  38. Pejler, B. & B. Bērziņš, 1994. On the ecology of Lecane (Rotifera). Hydrobiologia 273: 77–80.CrossRefGoogle Scholar
  39. Rundle, S. D., A. Foggo, V. Choiseul & D. T. Bilton, 2002. Are distribution patterns linked to dispersal mechanism? An investigation using pond invertebrate assemblages. Freshwater Biology 47: 1571–1581.CrossRefGoogle Scholar
  40. Rochefort, L., F. Quinty, S. Campeau, K. Johnson & T. Malterer, 2003. North American approach to the restoration of Sphagnum dominated peatlands. Wetlands Ecology and Management 11: 3–20.CrossRefGoogle Scholar
  41. Segers, H., 1995. The Lecanidae (Rotifera, Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 8. SPB Academic Publishing, The Hague.Google Scholar
  42. Shurin, J. B., 2000. Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81: 3074–3086.Google Scholar
  43. Shurin, J. B., J. E. Havel, M. A. Leibold & B. Pinel-Alloul, 2000. Local and regional zooplankton species richness: a scaleindependent test for saturation. Ecology 81: 3062–3073.Google Scholar
  44. Smolders, A. J. P., H. B. M. Tomassen, L. P. M. Lamers, B. P. Lomans & J. G. M. Roelofs, 2002. Peat bog restoration by floating raft formation: the effects of groundwater and peat quality. Journal of Applied Ecology 39: 391–401.CrossRefGoogle Scholar
  45. Smolders, A. J. P., H. B. M. Tomassen, M. van Mullekom, L. P. M. Lamers & J. G. M. Roelofs, 2003. Mechanisms involved in the re-establishment of Sphagnum-dominated vegetation in rewetted bog remnants. Wetlands Ecology and Management 11: 403–418.CrossRefGoogle Scholar
  46. Sørensen, T., 1948. A method of establishing groups of equal amplitude in plant society based on similarity of species content. K Danske Vidensk Selsk 5: 1–34.Google Scholar
  47. Southwood, T. R. E., 1962. Migration of terrestrial arthropods in relation to habitat. Biological Reviews of the Cambridge Philosophical Society 37: 171–214.CrossRefGoogle Scholar
  48. Ter Braak, C. J. F., 1995. Ordination. In Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge: 91–173.Google Scholar
  49. Ter Braak, C. J. F. & P. šmilauer, 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer power, Ithaca.Google Scholar
  50. Van Duinen, G. A., A. M. T. Brock, J. T. Kuper, T. M. J. Peeters, M. J. A. Smits, W. C. E. P. Verberk & H. Esselink, 2002. Important keys to successful restoration of characteristic aquatic macroinvertebrate fauna of raised bogs. In Schmilewski, G. & L. Rochefort (eds), Proceedings of the International Peat Symposium-Peat in Horticulture-Quality and Environmental Challenges. International Peat Society, Finland: 292–302.Google Scholar
  51. Van Duinen, G. A., A. M. T. Brock, J. T. Kuper, R. S. E. W. Leuven, T. M. J. Peeters, J. G. M. Roelofs, G. van der Velde, W. C. E. P. Verberk & H. Esselink, 2003. Do restoration measures rehabilitate fauna diversity in raised bogs? A comparative study on aquatic macroinvertebrates. Wetlands Ecology and Management 11: 447–459.CrossRefGoogle Scholar
  52. Van Duinen, G. A., T. Timm, A. J. P. Smolders & A. M. T. Brock, W. C. E. P. Verberk & H. Esselink, 2006. Differential response of aquatic oligochaete species to increased nutrient availability-a comparative study between Estonian and Dutch raised bogs. Hydrobiologia 564: 143–155.CrossRefGoogle Scholar
  53. Van Kleef, H. H., W. C. E. P. Verberk, R. S. E. W. Leuven, H. Esselink, G. van der Velde & G. A. van Duinen, 2006. Biological traits successfully predict the effects of restoration management on macroinvertebrates in shallow softwater lakes. Hydrobiologia 565: 201–216.CrossRefGoogle Scholar
  54. Vasander, H., E.-S. Tuittila, E. Lode, L. Lundin, M. Ilomets, T. Sallantaus, R. Heikkilä, M.-L. Pitkänen & J. Laine, 2003. Status and restoration of peatlands in northern Europe. Wetlands Ecology and Management 11: 51–63.CrossRefGoogle Scholar
  55. Verberk, W. C. E. P., G. A. van Duinen, T. M. J. Peeters & H. Esselink, 2001. Importance of variation in water types for water beetle fauna (Coleoptera) in Korenburgerveen, a bog remnant in the Netherlands. Proceedings of Experimental and Applied Entomology (N.E.V, Amsterdam) 12: 121–128.Google Scholar
  56. Verberk, W. C. E. P., H. H. van Kleef, M. Dijkman, P. van Hoek, P. Spierenburg & H. Esselink, 2005. Seasonal changes on two different spatial scales: response of aquatic invertebrates to water body and microhabitat. Insect Science 12: 263–280.CrossRefGoogle Scholar
  57. Wagner, D. L. & J. K. Liebherr, 1992. Flightlessness in insects. TREE 7: 216–219.Google Scholar
  58. Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems. Academic Press, San Diego.Google Scholar
  59. Zhuge, Y. & G. A. van Duinen, 2005. Rotifera, Copepoda and Cladocera in rewetted and non-rewetted raised bog remnants in The Netherlands. Report Bargerveen Foundation/Radboud University, Nijmegen.Google Scholar

Copyright information

© Springer2006 2006

Authors and Affiliations

  • G. A. van Duinen
    • 1
    • 2
  • Y. Zhuge
    • 1
    • 4
  • W. C. E. P. Verberk
    • 1
    • 3
  • A. M. T. Brock
    • 1
  • H. H. van Kleef
    • 1
    • 2
  • R. S. E. W. Leuven
    • 2
  • G. van der Velde
    • 3
  • H. Esselink
    • 1
    • 3
  1. 1.Bargerveen FoundationRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Environmental ScienceInstitute for Water and Wetland Research, Radboud University NijmegenNijmegenThe Netherlands
  3. 3.Department of Animal Ecology and EcophysiologyInstitute for Water and Wetland Research, Radboud University NijmegenNijmegenThe Netherlands
  4. 4.Institute of HydrobiologyChinese Academy of SciencesP. R. China

Personalised recommendations