Advertisement

Biogeochemical constraints on the ecological rehabilitation of wetland vegetation in river floodplains

  • R. Loeb
  • A. W. Boxman
  • L. P. M. Lamers
  • E. H. E. T. Lucassen
  • A. J. P. Smolders
  • J. G. M. Roelofs
  • A. M. Antheunisse
  • M. Miletto
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 187)

Abstract

The European policy for river management during peak discharge periods is currently changing from exclusion strategies (reinforcement of dykes) to allowing a more natural situation by creating more floodplain space to reduce water levels during peak discharges. In addition, water retention and water storage areas have been created. The new measures are generally being combined with nature development strategies. Up till now, however, ecological targets of broadscale floodplain wetland restoration including sedge marshes, species-rich floodplain forests and carrs, riparian mesotrophic grasslands and other biodiverse riverine ecosystems, have hardly developed in these areas.Most studies on the conditions needed for sustainable ecological development of floodplains have focused on hydrological and geomorphological rather than biogeochemical issues (including nutrient availability and limitation). There are, however, large differences in the composition of river water and groundwater and in sediment quality between rivers in densely populated areas and those in more pristine areas, which serve as a reference. It is very likely that these factors, in combination with heavily altered hydrological regimes and the narrow areas confined between the dykes on both sides of the rivers, impose major constraints on sustainable ecological development of riverine areas. Another issue is that existing wetlands are generally considered to be very appropriate for water retention and conservation, although recent research has shown that this may pose a serious threat to their biodiversity. The present paper reviews the biogeochemical constraints on the combination of floodplain rehabilitation, water conservation and the conservation and development of wetlands. It is concluded that biogeochemical problems (mainly related to eutrophication) predominantly arise in less dynamic parts of the river system, to which the flood-pulse concept applies less. Sound knowledge of the biogeochemical processes involved will contribute to greater efficiency and a better prediction of the opportunities for restoration and development of riverine wetlands. This information can be directly applied in nature management, water management, policy-making and consultancy.

Key words

biodiversity biogeochemistry eutrophication flooding nature conservation review water management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Admiraal, W., G. van der Velde, H. Smit & W. G. Cazemier, 1993. The rivers Rhine and Meuse in the Netherlands-Present state and signs of ecological recovery. Hydrobiologia 265: 97–128.Google Scholar
  2. Aerts, R. & F. S. Chapin, 2000. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research 30: 1–67.Google Scholar
  3. Amoros, C., 2001. The concept of habitat diversity between and within ecosystems applied to river side-arm restoration. Environmental Management 28: 805–817.PubMedCrossRefGoogle Scholar
  4. Amoros, C., G. Bornette & C. P. Henry, 2000. A vegetationbased method for ecological diagnosis of riverine wetlands. Environmental Management 25: 211–227.PubMedCrossRefGoogle Scholar
  5. Appelo, C. A. J. & D. Postma, 1993. Geochemistry, Groundwater and Pollution. A.A. Balkema Publishers, Rotterdam.Google Scholar
  6. Armstrong, J., F. Afreen-Zobayed & W. Armstrong, 1996. Phragmites die-back: sulphide-and acetic acid induced bud and root death, lignifications, and blockages within aeration and vascular systems. New Phytologist 134: 601–614.CrossRefGoogle Scholar
  7. Armstrong, W., R. Brändle & M. B. Jackson, 1994. Mechanisms of flood tolerance in plants. Acta Botanica Neerlandica 43: 307–358.Google Scholar
  8. Baker, M. A. & P. Vervier, 2004. Hydrological variability, matter supply and denitrification in the Garonne River ecosystem. Freshwater Biology 49: 181–190.CrossRefGoogle Scholar
  9. Bal, D., H. M. Beije, M. Fellinger, R. Haveman, A. J. F. M. van Opstal & F. J. van Zadelhoff, 2001. Handboek Natuurdoeltypen. Tweede, Geheel Herziene Druk. EC-LNV, Wageningen.Google Scholar
  10. Baldwin, D. S. & A. M. Mitchell, 2000. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regulated Rivers: Research and Management 16: 457–467.CrossRefGoogle Scholar
  11. Baptist, M. J., W. E. Penning, H. Duel, A. J. M. Smits, G. W. Geerling, G. E. M. van der Lee & J. S. L. van Alphen, 2004. Assessment of the effects of cyclic floodplain rejuvenation on flood levels and biodiversity along the Rhine river. River Research and Applications 20: 285–297.CrossRefGoogle Scholar
  12. Batty, L. C., A. J. M. Baker & B. D. Wheeler, 2002. Aluminium and phosphate uptake by Phragmites australis: the role of Fe, Mn and Al root plaques. Annals of Botany 89: 443–449.PubMedCrossRefGoogle Scholar
  13. Bayley, P. B., 1991. The flood pulse advantage and the restoration of river-floodplain systems. Regulated Rivers: Research and Management 47: 75–86.CrossRefGoogle Scholar
  14. Bedford, B. L., 1999. Cumulative effects on wetland landscapes: links to wetland restoration in the United States and southern Canada. Wetlands 19: 775–788.Google Scholar
  15. Bedford, B. L., M. R. Walbridge & A. Aldous, 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80: 2151–2169.Google Scholar
  16. Beltman, B., T. G. Rouwenhorst, M. B. van Kerkhoven, T. van der Krift & J. T. A. Verhoeven, 2000. Internal eutrophication in peat soils through competition between chloride and sulphate with phosphate for binding sites. Biogeochemistry 50: 183–194.CrossRefGoogle Scholar
  17. Bij de Vaate, A., R. Breukel & G. van der Velde, 2006. Longterm developments in the ecological rehabilitation of the main distributaries in the Rhine Delta: fish and macroinvertebrates. Hydrobiologia 565: 229–242.CrossRefGoogle Scholar
  18. Bloemendaal, F. H. J. L. & J. G. M. Roelofs, (eds), 1988. Waterplanten en Waterkwaliteit. Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging, Utrecht (in Dutch).Google Scholar
  19. Blom, C. W. P. M., L. A. C. J. Voesenek, M. Banga, W. M. H. G. Engelaar, J. H. G. M. Rijnders, H. M. van de Steeg & E. J. W. Visser, 1994. Physiological ecology of riverside species-adaptive responses of plants to submergence. Annals of Botany 74: 253–263.CrossRefGoogle Scholar
  20. Boedeltje, G., J. P. Bakker, A. ten Brinke, J. M. van Groenendael & M. Soesbergen, 2004. Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. Journal of Ecology 92: 786–796.CrossRefGoogle Scholar
  21. Boedeltje, G., A. J. P. Smolders, L. P. M. Lamers & J. G. M. Roelofs, 2005. Interactions between sediment propagule banks and sediment nutrient fluxes explain floating plant dominance in stagnant shallow waters. Archiv fü r Hydrobiologie 162: 349–362.CrossRefGoogle Scholar
  22. Bornette, G. & C. Amoros, 1996. Disturbance regimes and vegetation dynamics: Role of floods in riverine wetlands. Journal of Vegetation Science 7: 615–622.CrossRefGoogle Scholar
  23. Bornette, G., C. Amoros & N. Lamouroux, 1998. Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshwater Biology 39: 267–283.CrossRefGoogle Scholar
  24. Bornette, G., M. Guerlesquin & C. P. Henry, 1996. Are the Characeae able to indicate the origin of groundwater in former river channels? Vegetatio 125: 207–222.CrossRefGoogle Scholar
  25. Bornette, G., H. Piegay, A. Citterio, C. Amoros & V. Godreau, 2001. Aquatic plant diversity in four river floodplains: a comparison at two hierarchical levels. Biodiversity and Conservation 10: 1683–1701.CrossRefGoogle Scholar
  26. Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Archiv fü r Hydrobiologie 18: 5–59.Google Scholar
  27. Boxman, A. W., 2005. Effecten van Verminderde Stikstof-Depositie op een Grove Dennen Opstand in Natuurgebied ‚De Rouwkuilen‘, Limburg. Report by order of the Ministry of Agriculture, Nature & Food Quality. Radboud University Nijmegen, Nijmegen (in Dutch).Google Scholar
  28. Boxman, A. W., H. H. Bartelink, Ph. Bossenbroek, R. H. Kemmers & A. H. F. Stortelder, 2003. Uitvoering van Vernattingsmaatregelen op Praktijkschaal 1997-2003; Referentieproject Koelbroek. EC-LNV, Ede (in Dutch).Google Scholar
  29. Boxman, A. W. & J. G. M. Roelofs, 1988. Some effects of nitrate versus ammonium nutrition on the nutrient fluxes in Pinus sylvestris seedlings. Effects of mycorrhizal infection. Canadian Journal of Botany 66: 1091–1097.Google Scholar
  30. Bridgham, S. D. & C. J. Richardson, 2003. Endogenous versus exogenous nutrient control over decomposition and mineralization in North Carolina peatlands. Biogeochemistry 65: 151–178.CrossRefGoogle Scholar
  31. Brock, T. C. M., G. van der Velde & H. M. van de Steeg, 1987. The effects of extreme water level fluctuations on the wetland vegetation of a nymphaeid-dominated oxbow lake in the Netherlands. Archiv für Hydrobiologie Supplement 27: 57–73.Google Scholar
  32. Buijse, A. D., H. Coops, M. Staras, L. H. Jans, G. J. van Geest, R. E. Grift, B. W. Ibelings, W. Oosterberg & F. C. J. M. Roozen, 2002. Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology 47: 889–907.CrossRefGoogle Scholar
  33. Buijse, A. D., F. Klijn, R. S. E. W. Leuven, H. Middelkoop, F. Schiemer, J. H. Thorp & H. P. Wolfert, 2005. Rehabilitation of large rivers: references, achievements and integration into river management. Archiv für Hydrobiologie Supplement 155-Large Rivers 15: 715–738.Google Scholar
  34. Burt, T. P., L. S. Matchett, K. W. T. Goulding, C. P. Webster & N. E. Haycock, 1999. Denitrification in riparian buffer zones: the role of floodplain hydrology. Hydrological Processes 13: 1451–1463.CrossRefGoogle Scholar
  35. Cals, M. J. R., R. Postma, A. D. Buijse & E. C. L. Marteijn, 1998. Habitat restoration along the River Rhine in The Netherlands: Putting ideas into practice. Aquatic Conservation-Marine and Freshwater Ecosystems 8: 61–70.CrossRefGoogle Scholar
  36. Caraco, N. F., J. J. Cole & G. E. Likens, 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 156–158.CrossRefGoogle Scholar
  37. Caraco, N. F., J. J. Cole & G. E. Likens, 1993. Sulfate control of phosphorus availability in lakes-a test and reevaluation of Hasler and Einsele model. Hydrobiologia 253: 275–280.CrossRefGoogle Scholar
  38. Carbiener, R., M. Trèmolieres, J. L. Mercier & A. Ortscheit, 1990. Aquatic macrophyte communities as bioindicators of eutrophication in calcareous oligosaprobe stream waters (Upper Rhine plain, Alsace). Vegetatio 86: 71–88.CrossRefGoogle Scholar
  39. Castro, H., K. R. Reddy & A. Ogram, 2002. Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Applied and Environmental Microbiology 68: 6129–6137.PubMedCrossRefGoogle Scholar
  40. CBS, 2004. Productie van mest en mineralen. http://www.statline. cbs.nl. CBS, Voorburg/Heerlen.Google Scholar
  41. Chapin, F. S. I., 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233–260.CrossRefGoogle Scholar
  42. Christian, R. R., W. L. Bryant & M. M. Brinson, 1990. Juncus roemerianus production and decomposition along gradients of salinity and hydroperiod. Marine Ecology-Progress Series 68: 137–145.CrossRefGoogle Scholar
  43. Coops, H., N. Geilen & G. van der Velde, 1999. Helophyte zonation in two regulated estuarine areas in the Netherlands: vegetation analysis and relationships with hydrological factors. Estuaries 22: 657–668.CrossRefGoogle Scholar
  44. Coops, H., N. Geilen, H. J. Verheij, R. Boeters & G. van der Velde, 1996b. Interactions between waves, bank erosion and emergent vegetation: an experimental study in a wave tank. Aquatic Botany 53: 187–198.CrossRefGoogle Scholar
  45. Coops, H., F. W. B. van den Brink & G. van der Velde, 1996a. Growth and morphological responses of four helophyte species in an experimental water-depth gradient. Aquatic Botany 54: 11–24.CrossRefGoogle Scholar
  46. Coops, H. & G. van der Velde, 1995. Seed dispersal, germination and seedling growth of six helophyte species in relation to water-level zonation. Freshwater Biology 34: 13–20.CrossRefGoogle Scholar
  47. Coops, H. & G. van der Velde, 1996. Effects of waves on helophyte stands: mechanical characteristics of stems of Phragmites australis and Scirpus lacustris. Aquatic Botany 53: 175–185.CrossRefGoogle Scholar
  48. Crawford, R. M. M., 1987. Plant Life in Aquatic and Amphibious Habitats. Blackwell Science Publication, Oxford.Google Scholar
  49. Crawford, R. M. M., 2003. Seasonal differences in plant responses to flooding and anoxia. Canadian Journal of Botany 81: 1224–1246.CrossRefGoogle Scholar
  50. Darke, A. K. & M. R. Walbridge, 2000. Al and Fe biogeochemistry in a floodplain forest: implications for P retention. Biogeochemistry 51: 1–32.CrossRefGoogle Scholar
  51. Dawson, F. H. & K. Szoszkiewicz, 1999. Relationships of some ecological factors with the associations of vegetation in British rivers. Hydrobiologia 415: 117–122.CrossRefGoogle Scholar
  52. Day, R. T., P. A. Keddy, J. McNeill & T. Carleton, 1988. Fertility and disturbance gradients: a summary model for riverine marsh vegetation. Ecology 69: 1044–1054.CrossRefGoogle Scholar
  53. De Graaf, M. C. C., R. Bobbink, J. G. M. Roelofs & P. J. M. Verbeek, 1998. Differential effects of ammonium and nitrate on three heathland species. Plant Ecology 135: 185–196.CrossRefGoogle Scholar
  54. De Graaf, M. C. C., R. Bobbink, P. J. M. Verbeek & J. G. M. Roelofs, 1997. Aluminium toxicity and tolerance in three heathland species. Water, Air and Soil Pollution 98: 229–239.Google Scholar
  55. Demars, B. O. L. & D. M. Harper, 1998. The aquatic macrophytes of an English lowland river system: assessing response to nutrient enrichment. Hydrobiologia 384: 75–88.CrossRefGoogle Scholar
  56. Demars, B. O. L. & D. M. Harper, 2005. Distribution of aquatic vascular plants in lowland rivers: separating the effects of local environmental conditions, longitudinal connectivity and river basin isolation. Freshwater Biology 50: 418–437.CrossRefGoogle Scholar
  57. De Mars, H., M. J. Wassen & W. H. M. Peeters, 1996. The effect of drainage and management on peat chemistry and nutrient deficiency in the former Jegrznia-floodplain (NE-Poland). Vegetatio 126: 59–72.Google Scholar
  58. De Mars, H., M. J. Wassen & H. O. Venterink, 1997. Flooding and groundwater dynamics in fens in eastern Poland. Journal of Vegetation Science 8: 319–328.CrossRefGoogle Scholar
  59. Den Hartog, C., 1974. Brackish-water classification, its development and problems. Hydrobiological Bulletin 8: 15–28.CrossRefGoogle Scholar
  60. De Waal, L. C., A. R. G. Large, C. J. Grippel & P. M. Wade, 1995. River and floodplain rehabilitation in Western Europe: opportunities and constraints. Archiv für Hydrobiologie Supplement 101-Large Rivers 9: 679–693.Google Scholar
  61. Florence, T. M., G. M. Morrison & J. L. Stauber, 1992. Determination of trace-element speciation and the role of speciation in aquatic toxicity. Science of the Total Environment 125: 1–13.PubMedCrossRefGoogle Scholar
  62. Forstner, U., 1993. Metal speciation-General concepts and applications. International Journal of Environmental Analytical Chemistry 51: 5–23.CrossRefGoogle Scholar
  63. Freeman, C., G. Liska, N. J. Ostle, M. A. Lock, B. Reynolds & J. Hudson, 1996. Microbial activity and enzymic decomposition processes following peatland water table drawdown. Plant and Soil 180: 121–127.CrossRefGoogle Scholar
  64. Galat, D. L., L. H. Fredrickson, D. D. Humburg, K. J. Bataille, J. R. Bodie, J. Dohrenwend, G. T. Gelwicks, J. E. Havel, D. L. Helmers, J. B. Hooker, J. R. Jones, M. F. Knowlton, J. Kubisiak, J. Mazourek, A. C. McColpin, R. B. Renken & R. D. Semlitsch, 1998. Flooding to restore connectivity of regulated, large-river wetlands-natural and controlled flooding as complementary processes along the lower Missouri River. Bioscience 48: 721–733.CrossRefGoogle Scholar
  65. Geerling, G. W., A. M. J. Ragas, R. S. E. W. Leuven, J. H. van den Berg, M. Breedveld, D. Liefhebber & A. J. M. Smits, 2006. Succession and rejuvenation in floodplains along the River Allier (France). Hydrobiologia 565: 71–86.CrossRefGoogle Scholar
  66. Gocht, T., K. M. Moldenhauer & W. Puttmann, 2001. Historical record of polycyclic aromatic hydrocarbons (PAH) and heavy metals in floodplain sediments from the Rhine River (Hessisches Ried, Germany). Applied Geochemistry 16: 1707–1721.CrossRefGoogle Scholar
  67. Godreau, V., G. Bornette, B. Frochot, C. Amoros, E. Castella, B. Oertli, F. Chambaud, D. Oberti & E. Craney, 1999. Biodiversity in the floodplain of Saône: a global approach. Biodiversity and Conservation 8: 839–864.CrossRefGoogle Scholar
  68. Golterman, H. L., 1998. The distribution of phosphate over iron-bound and calcium-bound phosphate in stratified sediments. Hydrobiologia 364: 75–81.CrossRefGoogle Scholar
  69. Goodyear, K. L. & S. McNeill, 1999. Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Science of the Total Environment 229: 1–19.CrossRefGoogle Scholar
  70. Grace, J. B. & H. Jutila, 1999. The relationship between species density and community biomass in grazed and ungrazed coastal meadows. Oikos 85: 398–408.CrossRefGoogle Scholar
  71. Grace, J. B. & B. H. Pugesek, 1997. A structural equation model of plant species richness and its application to a coastal wetland. The American Naturalist 149: 436–460.CrossRefGoogle Scholar
  72. Grime, J. P., 1974. Vegetation classification by reference to strategies. Nature 250: 26–31.CrossRefGoogle Scholar
  73. Güsewell, S., 2004. (Tansley review) N: P ratios in terrestrial plants: variation and functional significance. New Phytologist 164: 243–266.CrossRefGoogle Scholar
  74. Hall, L. W. & R. D. Anderson, 1995. The influence of salinity on the toxicity of various classes of chemicals to aquatic biota. Critical Reviews in Toxicology 25: 281–346.PubMedCrossRefGoogle Scholar
  75. Harper, D., C. Smith, P. Barham & R. Howell, 1995. The ecological basis for the management of the natural river environment. In Harper, D. M. & A. J. D. Ferguson (eds), The Ecological Basis for River Management. Wiley, Chichester, 219–238.Google Scholar
  76. Heathwaite, A. L., 1990. The effect of drainage on nutrient release from fen peat and its implications for water-quality-a laboratory simulation. Water, Air and Soil Pollution 49: 159–173.CrossRefGoogle Scholar
  77. Hefting, M., J. C. Clement, D. Dowrick, A. C. Cosandey, S. Bernal, C. Cimpian, A. Tatur, T. P. Burt & G. Pinay, 2004. Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry 67: 113–134.CrossRefGoogle Scholar
  78. Heiler, G., T. Hein, F. Schiemer & G. Bornette, 1995. Hydrological connectivity and flood pulses as the central aspects for the integrity of a river-floodplain system. Regulated Rivers: Research and Management 11: 351–361.CrossRefGoogle Scholar
  79. Hendriks, A. J., W.C. Ma, J. J. Brouns, E. M. DeRuiter-Dijkman & R. Gast, 1995.Modeling andmonitoring organochlorine and heavy-metal accumulation in soils, earthworms, and shrews in Rhine-delta floodplains. Archives of Environmental Contamination and Toxicology 29: 115–127.PubMedCrossRefGoogle Scholar
  80. Hendriks, A. J. & H. Pieters, 1993. Monitoring concentrations of microcontaminants in aquatic organisms in the Rhine delta-a comparison with reference values. Chemosphere 26: 817–836.CrossRefGoogle Scholar
  81. Henry, C. P., C. Amoros & G. Bornette, 1996. Species traits and recolonization processes after flood disturbances in riverine macrophytes. Vegetatio 122: 13–27.CrossRefGoogle Scholar
  82. Hobbelen, P. H. F., J. E. Koolhaas & C. A. M. van Gestel, 2004. Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, the Netherlands, taking bioavailability into account. Environmental Pollution 129: 409–419.PubMedCrossRefGoogle Scholar
  83. Hoffmann, C. C., M. L. Pedersen, B. Kronvang & L. Ovig, 1998. Restoration of the rivers Brede, Cole and Skerne: a joint Danish and British EU-LIFE demonstration project, IV-Implications for nitrate and iron transformation. Aquatic Conservation-Marine and Freshwater Ecosystems 8: 223–240.CrossRefGoogle Scholar
  84. Hogan, D. M., T. E. Jordan & M. R. Walbridge, 2004. Phosphorus retention and soil organic carbon in restored and natural freshwater wetlands. Wetlands 24: 573–585.CrossRefGoogle Scholar
  85. Hollander, A., M. A. J. Huijbregts, A. M. J. Ragas & D. van de Meent, 2006. BasinBox: a generic multimedia fate model for predicting the fate of chemicals in river catchments. Hydrobiologia 565: 21–38.CrossRefGoogle Scholar
  86. Hupp, C. R., 1992. Riparian vegetation recovery patterns following stream channelization-a geomorphic perspective. Ecology 73: 1209–1226.CrossRefGoogle Scholar
  87. Hyacinthe, C. & P. van Cappellen, 2004. An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity. Marine Chemistry 91: 227–251.CrossRefGoogle Scholar
  88. ICPR, 2005. International Commission for the Protection of the Rhine, http://www.iksr.org/.
  89. Jackson, M. B. & M. C. Drew, 1984. Effects of flooding on growth and metabolism of herbaceous plants. In Kozlowski, T. T. (ed.), Flooding and Plant Growth. Academic Press Inc, New York, 47–128.Google Scholar
  90. Japenga, J. & W. Salomons, 1993. Dyke-protected floodplains-a possible chemical time bomb. Land Degradation and Rehabilitation 4: 373–380.CrossRefGoogle Scholar
  91. Japenga, J., K. H. Zschuppe, A. J. de Groot & W. Salomons, 1990. Heavy-metals and organic micropollutants in floodplains of the River Waal, a distributary of the River Rhine, 1958-1981. Netherlands Journal of Agricultural Science 38: 381–397.Google Scholar
  92. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The floodpulse concept in river floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  93. Kester, R. A., M. E. Meijer, J. A. Libochant, W. de Boer & H. J. Laanbroek, 1997. Contribution of nitrification and denitrification to the NO and N2O emissions of an acid forest soil, a river sediment and a fertilized grassland soil. Soil Biology and Biochemistry 29: 1655–1664.CrossRefGoogle Scholar
  94. Khalid, R. A., W. H. Patrick & R. D. DeLaune, 1977. Phosphorus sorption characteristics of flooded soils. Soil Science Society of America Journal 41: 305–310.CrossRefGoogle Scholar
  95. Knowlton, M. F. & J. R. Jones, 1997. Trophic status of Missouri River floodplain lakes in relation to basin type and connectivity. Wetlands 17: 468–475.CrossRefGoogle Scholar
  96. Koerselman, W., M. B. van Kerkhoven & J. T. A. Verhoeven, 1993. Release of inorganic N, P and K in peat soils-effect of temperature, water chemistry and water-level. Biogeochemistry 20: 63–81.CrossRefGoogle Scholar
  97. Koerselman, W. & J. T. A. Verhoeven, 1995. Eutrophication of fen ecosystems: external and internal nutrient sources and restoration strategies. In Wheeler, B. D., S. C. Shaw, W. J. Fojt & R. A. Robertson (eds), Restoration of Temperate Wetlands. John Wiley and Sons Ltd, Chichester, 91–112.Google Scholar
  98. Kohler, A., R. Wonneber & G. Zeltner, 1973. Chemical data and aquatic vascular plants as indicators for pollution in Moosach River system near Munich. Archiv für Hydrobiologie 72: 533–549.Google Scholar
  99. Kok, C. J., G. van der Velde & K. M. Landsbergen, 1990. Production, nutrient dynamics and initial decomposition of floating leaves of Nymphaea alba L and Nuphar lutea (L) Sm (Nymphaeaceae) in alkaline and acid waters. Biogeochemistry 11: 235–250.CrossRefGoogle Scholar
  100. Kölle, W., O. Strebel & J. Böttcher, 1985. Formation of sulfate by microbial denitrification in a reducing aquifer. Water Supply 3: 33–40.Google Scholar
  101. Kooistra, L., R. S. E. W. Leuven, P. H. Nienhuis, R. Wehrens & L. M. C. Buydens, 2001. A procedure for incorporating spatial variability in ecological risk assessment of Dutch river floodplains. Environmental Management 28: 359–373.PubMedCrossRefGoogle Scholar
  102. Kooistra, L., E. A. L. Salas, J. G. P. W. Clevers, R. Wehrens, R. S. E. W. Leuven, P. H. Nienhuis & L. M. C. Buydens, 2004. Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environmental Pollution 127: 281–290.PubMedCrossRefGoogle Scholar
  103. Kotowski W., 2002. Fen communities. Ecological mechanisms and conservation strategies. Ph.D Thesis, University of Groningen, Groningen.Google Scholar
  104. Kotowski, W. & R. van Diggelen, 2004. Light as an environmental filter in fen vegetation. Journal of Vegetation Science 15: 583–594.CrossRefGoogle Scholar
  105. Kronvang, B., L. M. Svendsen, A. Brookes, K. Fisher, B. Moller, O. Ottosen, M. Newson & D. Sear, 1998. Restoration of the rivers Brede, Cole and Skerne: a joint Danish and British EU-LIFE demonstration project, III-channel morphology, hydrodynamics and transport of sediment and nutrients. Aquatic Conservervation-Marine and Freshwater Ecosystems 8: 209–222.CrossRefGoogle Scholar
  106. Laanbroek, H. J., 1990. Bacterial cycling of minerals that affect plant-growth in waterlogged soils-A review. Aquatic Botany 38: 109–125.CrossRefGoogle Scholar
  107. Laanbroek, H. J., H. J. Geerligs, L. Sijtsma & H. Veldkamp, 1984. Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. Applied and Environmental Microbiology 47: 329–334.PubMedGoogle Scholar
  108. Laanbroek, H. J. & N. Pfennig, 1981. Oxidation of short-chain fatty-acids by sulfate-reducing bacteria in fresh-water and in marine-sediments. Archives of Microbiology 128: 330–335.PubMedCrossRefGoogle Scholar
  109. Lamers, L. P. M., S. J. Falla, E. M. Samborska, L. A. R. van Dulken, G. van Hengstum & J. G. M. Roelofs, 2002a. Factors controlling the extent of eutrophication and toxicity in sulfate-polluted freshwater wetlands. Limnology and Oceanography 47: 585–593.Google Scholar
  110. Lamers, L. P. M., S. M. E. van Roozendaal & J. G. M. Roelofs, 1998a. Acidification of freshwater wetlands: combined effects of non-airborne sulfur pollution and desiccation. Water, Air and Soil Pollution 105: 95–106.CrossRefGoogle Scholar
  111. Lamers, L. P. M., A. J. P. Smolders & J. G. M. Roelofs, 2002b. The restoration of fens in the Netherlands. Hydrobiologia 478: 107–130.CrossRefGoogle Scholar
  112. Lamers, L. P. M., G. E. ten Dolle, S. T. G. van den Berg, S. P. J. van Delft & J. G. M. Roelofs, 2001. Differential responses of freshwater wetland soils to sulphate pollution. Biogeochemistry 55: 87–102.CrossRefGoogle Scholar
  113. Lamers, L. P. M., H. B. M. Tomassen & J. G. M. Roelofs, 1998b. Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environmental Science and Technology 32: 199–205.CrossRefGoogle Scholar
  114. Lenssen, J., F. Menting, W. van der Putten & K. Blom, 1999. Control of plant species richness and zonation of functional groups along a freshwater flooding gradient. Oikos 86: 523–534.CrossRefGoogle Scholar
  115. Leuven, R. S. E. W., A. J. M. Smits & P. H. Nienhuis, 2000. From integrated approaches to sustainable river management. In Smits, A. J. M., P. H. Nienhuis & R. S. E. W. Leuven (eds), New Approaches to Sustainable River Management. Backhuys Publishers, Leiden, 329–347.Google Scholar
  116. Leuven, R. S. E. W., S. Wijnhoven, L. Kooistra, R. J. W. de Nooij & M. A. J. Huijbregts, 2005. Toxicological constraints for rehabilitation of riverine habitats along lowland rivers. Archiv für Hydrobiologie Supplement 155, Large Rivers 15: 657–676.Google Scholar
  117. Lockaby, B. G., A. L. Murphy & G. L. Somers, 1996. Hydroperiod influences on nutrient dynamics in decomposing litter of a floodplain forest. Soil Science Society of America Journal 60: 1267–1272.CrossRefGoogle Scholar
  118. Loeb, R., & L. P. M. Lamers, 2003. The effects of river water quality on the development of wet floodplain vegetation types in the Netherlands. Proceedings of the International Ecoflood Conference ‘Towards natural flood reduction strategies’, Warsaw, Poland. http://levis.sggw.waw.pl/ ecoflood/.Google Scholar
  119. Lomans, B. P., A. J. P. Smolders, L. M. Intven, A. Pol, H. J. M. den op Camp & C. van der Drift, 1997. Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Applied and Environmental Microbiology 63: 4741–4747.PubMedGoogle Scholar
  120. Lucassen, E. C. H. E. T., R. Bobbink, A. J. P. Smolders, P. J. M. van der Ven, L. P. M. Lamers & J. G. M. Roelofs, 2003. Interactive effects of low pH and high ammonium levels responsible for the decline of Cirsium dissectum (L.) Hill. Plant Ecology 165: 45–52.CrossRefGoogle Scholar
  121. Lucassen, E. C. H. E. T., A. J. P. Smolders, L. P. M. Lamers & J. G. M. Roelofs, 2005. Water table fluctuations and groundwater supply are important in preventing phosphateeutrophication in sulphate-rich fens: consequences for wetland restoration. Plant and Soil 269: 109–115.CrossRefGoogle Scholar
  122. Lucassen, E. C. H. E. T., A. J. P. Smolders & J. G. M. Roelofs, 2000. Increased groundwater levels cause iron toxicity in Glyceria fluitans (L.). Aquatic Botany 66: 321–327.CrossRefGoogle Scholar
  123. Lucassen, E. C. H. E. T., A. J. P. Smolders & J. G. M. Roelofs, 2002. Potential sensitivity of mires to drought, acidification and mobilisation of heavy metals: the sediment S/(Ca+Mg) ratio as diagnostic tool. Environmental Pollution 120: 635–646.PubMedGoogle Scholar
  124. Lucassen, E. C. H. E. T., A. J. P. Smolders, J. van de Crommenacker & J. G. M. Roelofs, 2004a. Effects of stagnating sulphate-rich groundwater on the mobility of phosphate in freshwater wetlands: a field experiment. Archiv für Hydrobiologie 160: 117–131.CrossRefGoogle Scholar
  125. Lucassen, E. C. H. E. T., A. J. P. Smolders, A. L. van der Salm & J. G. M. Roelofs, 2004b. High groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlands. Biogeochemistry 67: 249–267.CrossRefGoogle Scholar
  126. Mendelssohn, I. A., B. K. Sorrell, H. Brix, H. H. Schierup, B. Lorenzen & E. Maltby, 1999. Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland in Denmark. Aquatic Botany 64: 381–398.CrossRefGoogle Scholar
  127. Middelkoop, H., 2000. Heavy-metal pollution of the river Rhine and Meuse floodplains in the Netherlands. Netherlands Journal of Geosciences-Geologie en Mijnbouw 79: 411–427.Google Scholar
  128. Middleton, B. A., 1999. Wetland Restoration, Flood Pulsing and Disturbance Dynamics. John Wiley and Sons Inc., New York.Google Scholar
  129. Mommer, L., O. Pedersen & E. J. W. Visser, 2004. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water. Plant Cell and Environment 27: 1281–1287.CrossRefGoogle Scholar
  130. Moss, B., 1994. Brackish and fresh-water shallow lakes-Different systems or variations on the same theme. Hydrobiologia 276: 1–14.CrossRefGoogle Scholar
  131. Mostert, E., 1998. River basin management in the European Union. How it is done and how it should be done. European Water Management 1: 26–35.Google Scholar
  132. Nienhuis, P.H., 2006. Water and values: ecological research as the basis for water management and nature management. Hydrobiologia 565: 261–275.CrossRefGoogle Scholar
  133. Nienhuis, P. H., A. D. Buijse, R. S. E. W. Leuven, A. J. M. Smits, R. J. W. de Nooij & E. M. Samborska, 2002. Ecological rehabilitation of the lowland basin of the river Rhine (NW Europe). Hydrobiologia 478: 53–72.CrossRefGoogle Scholar
  134. Nienhuis P. H., R. S. E. W. Leuven, & A. M. J. Ragas (eds), 1998. New Concepts for Sustainable Management of River Basins. Backhuys Publishers, Leiden.Google Scholar
  135. Nordstrom, D. K., 1982. Aqueous pyrite oxidation and consequent formation of secondary iron minerals in acid sulphate weathering. Soil Science Society of America Journal 10: 37–56.Google Scholar
  136. Olde Venterink, H., M. J. Wassen, J. D. M. Belgers & J. T. A. Verhoeven, 2001. Control of environmental variables on species density in fens and meadows: importance of direct effects and effects through community biomass. Journal of Ecology 89: 1033–1040.CrossRefGoogle Scholar
  137. Olde Venterink, H., M. J. Wassen, A. W. M. Verkroost & P. C. de Ruiter, 2003a. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84: 2191–2199.CrossRefGoogle Scholar
  138. Olde Venterink, H., F. Wiegman, G. E. M. van der Lee & J. E. Vermaat, 2003b. Role of active floodplains for nutrient retention in the river Rhine. Journal of Environmental Quality 32: 1430–1435.PubMedGoogle Scholar
  139. Olsen, S. R., C. W. Cole, R. Watanabe & L. A. Dean, 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. US Dpt. of Agriculture circular 939.Google Scholar
  140. Onaindia, M., B. G. Debikuna & I. Benito, 1996. Aquatic plants in relation to environmental factors in northern Spain. Journal of Environmental Management 47: 123–137.CrossRefGoogle Scholar
  141. Patrick, W. H., S. Gotoh & B. G. Williams, 1973. Strengite dissolution in flooded soils and sediments. Science 179: 564–565.PubMedCrossRefGoogle Scholar
  142. Patrick, W. H. & R. A. Khalid, 1974. Phosphate release and sorption by soils and sediments-effect of aerobic and anaerobic conditions. Science 186: 53–55.PubMedCrossRefGoogle Scholar
  143. Paul, E. A. & F. E. Clark, 1989. Soil Biology and Biochemistry. 2nd edn. Academic Press, San Diego, London.Google Scholar
  144. Pauwels, H., W. Kloppmann, J. C. Foucher, A. Martelat & V. Fritsche, 1998. Field tracer test for denitrification in a pyritebearing aquifer. Applied Geochemistry 13: 767–778.CrossRefGoogle Scholar
  145. Pedroli, B., G. de Blust, K. van Looy & S. van Rooij, 2001. Setting targets in strategies for river restoration. Landscape Ecology 17: 5–18.CrossRefGoogle Scholar
  146. Pezeshki, S. R., 2001. Wetland plant responses to soil flooding. Environmental and Experimental Botany 46: 299–312.CrossRefGoogle Scholar
  147. Pinay, G., V. J. Black, A. M. Planty-Tabacchi, B. Gumiero & H. Decamps, 2000. Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50: 163–182.CrossRefGoogle Scholar
  148. Poiani, K. A. & B. L. Bedford, 1995. GIS based nonpointsource pollution modeling-considerations for wetlands. Journal of Soil and Water Conservation 50: 613–619.Google Scholar
  149. Pollock, M. M., R. J. Naiman & T. A. Hanley, 1998. Plant species richness in riparian wetlands-A test of biodiversity theory. Ecology 79: 94–105.Google Scholar
  150. Ponnamperuma, F. N., 1984. Effects of flooding on soils. In Kozlowski, T. T. (ed.), Flooding and Plant Growth. Academic Press Inc., Orlando: 9–45.Google Scholar
  151. Postma, R., M. J. J. Kerkhofs, G. B. M. Pedroli & J. G. M. Rademakers, 1996. Een stroom natuur. Natuurstreefbeelden voor Rijn en Maas. Watersysteemverkenningen 1996:1–102. RIZA nota 95.060 (in Dutch).Google Scholar
  152. Reddy, K. R., R. H. Kadlec, E. Flaig & P. M. Gale, 1999. Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science and Technology 29: 83–146.CrossRefGoogle Scholar
  153. Rengel, Z., 1996. (Tansley review) Uptake of aluminium by plant cells. New Phytologist 134: 389–406.CrossRefGoogle Scholar
  154. Richardson, C. J., 1985. Mechanisms controlling phosphorus retention capacity in fresh-water wetlands. Science 228: 1424–1427.PubMedCrossRefGoogle Scholar
  155. RIVM, 2004. Water quality Rhine and Meuse, 1980-2003 (figures from RIZA monitoring programme, various years), http://www.rivm.nl/milieuennatuurcompendium/.
  156. Roelofs, J. G. M., 1991. Inlet of alkaline river water into peaty lowlands: effects on water quality and Stratiotes aloides L. stands. Aquatic Botany 39: 267–293.CrossRefGoogle Scholar
  157. Roelofs, J. G. M., A. J. Kempers, A. L. F. M. Houdijk & J. Jansen, 1985. The effect of ar-borne ammonium-sulfate on Pinus nigra var maritima in the Netherlands. Plant and Soil 84: 45–56.CrossRefGoogle Scholar
  158. Roozen, F. C. J. M., G. J. van Geest, B. W. Ibelings R. Rooijackers, M. Scheffer & A. D. Buijse, 2003. Lake age and water level affect the turbidity of floodplain lakes along the lower Rhine. Freshwater Biology 48: 519–531.CrossRefGoogle Scholar
  159. Rout, G. R., S. Samantaray & P. Das, 2001. Aluminium toxicity in plants: a review. Agronomie 21: 3–21.CrossRefGoogle Scholar
  160. Schröder, T. J., T. Hiemstra, J. P. M. Vink & S. E. A. T. M. van der Zee, 2005. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse. Environmental Science and Technology 39: 7176–7184.PubMedCrossRefGoogle Scholar
  161. Schuurkes, J. A. A. R., A. J. Kempers & C. J. Kok, 1988. Aspects of biochemical sulfur conversions in sediments of a shallow soft-water lake. Journal of Freshwater Ecology 4: 369–381.Google Scholar
  162. Simons, J. H. E. J., C. Bakker, M. H. I. Schropp, L. H. Jans, F. R. Kok & R. E. Grift, 2001. Man-made secondary channels along the River Rhine (the Netherlands); results of post-project monitoring. Regulated Rivers: Research and Management 17: 473–491.CrossRefGoogle Scholar
  163. Sjodin, A. L., W. M. Lewis & J. F. Saunders, 1997. Denitrifi-cation as a component of the nitrogen budget for a large plains river. Biogeochemistry 39: 327–342.CrossRefGoogle Scholar
  164. Smit, H., G. van der Velde, R. Smits & H. Coops, 1997. Ecosystem responses in the Rhine-Meuse delta during two decades after enclosure and steps toward estuary restoration. Estuaries 20: 504–520.CrossRefGoogle Scholar
  165. Smits, A. J. M., R. M. J. C. Kleukers, C. J. Kok & G. van der Velde, 1990b. Alcohol dehydrogenase isozymes in the roots of some nymphaeid and isoetid macrophytes. Adaptations to hypoxic sediment conditions?. Aquatic Botany 38: 19–27.CrossRefGoogle Scholar
  166. Smits, A. J. M., P. H. Nienhuis & R. S. E. W. Leuven (eds), 2000. New Approaches to River Management. Bakhuys Publishers, Leiden.Google Scholar
  167. Smits, A. J. M., P. H. Nienhuis & H. L. F. Saeijs, 2006. Changing estuaries, changing views. Hydrobiololgia 565: 339–355.CrossRefGoogle Scholar
  168. Smits, A. J. M., P. H. van Avesaath & G. van der Velde, 1990a. Germination requirements and seed banks of some nymphaeid macrophytes-Nymphaea alba L, Nuphar lutea (L) Sm and Nymphoides peltata (Gmel.) O. Kuntze. Freshwater Biology 24: 315–326.CrossRefGoogle Scholar
  169. Smits, A. J. M., G. W. H. Schmitz & G. van der Velde, 1992. Calcium-dependent lamina production of Nymphoides peltata (Gmel.) O. Kuntze (Menyanthaceae)-implications for distribution. Journal of Experimental Botany 43: 1273–1281.CrossRefGoogle Scholar
  170. Smits, A. J.M., G.H. W. Schmitz, G. van der Velde & L.A. C. J. Voesenek, 1995. Influence of ethanol and ethylene on the seed-germination of three nymphaeid water plants. Freshwater Biology 34: 39–46.CrossRefGoogle Scholar
  171. Smolders, A. J. P., C. den Hartog, C. B. L. van Gestel & J. G. M. Roelofs, 1996. The effects of ammonium on growth, accumulation of free amino acids and nutritional status of young phosphorus deficient Stratiotes aloides plants. Aquatic Botany 53: 85–96.CrossRefGoogle Scholar
  172. Smolders, A. J. P., L. P. M. Lamers, M. Moonen, K. Zwaga & J. G. M. Roelofs, 2001. Controlling phosphate release from phosphate-enriched sediments by adding various iron compounds. Biogeochemistry 54: 219–228.CrossRefGoogle Scholar
  173. Smolders, A. J. P. & J. G. M. Roelofs, 1993. Sulphate mediated iron limitation and eutrophication in aquatic systems. Aquatic Botany 46: 247–253.CrossRefGoogle Scholar
  174. Smolders, A. J. P. & J. G. M. Roelofs, 1995. Internal eutrophication, iron limitation and sulphide accumulation due to the inlet of river Rhine water in peaty shallow waters in the Netherlands. Archiv für Hydrobiologie 133: 349–365.Google Scholar
  175. Smolders, A. J. P. & J. G. M. Roelofs, 1996. The roles of internal iron hydroxide precipitation, sulphide toxicity and oxidizing ability in the survival of Stratiotes aloides roots at different iron concentrations in sediment pore water. New Phytologist 133: 253–260.CrossRefGoogle Scholar
  176. Smolders, A., J. G. M. Roelofs & G. van der Velde, 1994. Iron deficiency in Nymphoides peltata owing to the exhaustion of dissolved iron in anaerobic sediments. Aquatic Botany 47: 349–353.CrossRefGoogle Scholar
  177. Snowden, R. E. D. & B. D. Wheeler, 1995. Chemical changes in selected wetland plant species with increasing Fe supply, with specific reference to root precipitates and Fe tolerance. New Phytologist 131: 503–520.CrossRefGoogle Scholar
  178. Sparks, R. E., 1995. Need for ecosystem management of large rivers and their floodplains. BioScience 45: 168–182.CrossRefGoogle Scholar
  179. Spink, A., R. E. Sparks, M. van Oorschot & J. T. A. Verhoeven, 1998. Nutrient dynamics of large river floodplains. Regulated Rivers: Research and Management 14: 203–216.CrossRefGoogle Scholar
  180. Steiger, J. & A. M. Gurnell, 2003. Spatial hydrogeomorphological influences on sediment and nutrient deposition in riparian zones: observations from the Garonne River, France. Geomorphology 49: 1–23.CrossRefGoogle Scholar
  181. Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry, an Introduction Emphasizing Chemical Equilibria in Natural Waters (2nd ed.). John Wiley and Sons Inc., New York.Google Scholar
  182. Taylor, D. R., L. W. Aarssen & C. Loehle, 1990. On the relationship between R/K selection and environmental carryingcapacity-A new habitat templet for plant life-history strategies. Oikos 58: 239–250.CrossRefGoogle Scholar
  183. Tessier, A. & D. R. Turner (eds), 1995. Metal Speciation and Bioavailability in Aquatic Systems. John Wiley & Sons Inc., Chichester.Google Scholar
  184. Tilman, D., 1994. Competition and biodiversity in spatially structured habitats. Ecology 75: 2–16.CrossRefGoogle Scholar
  185. Tockner, K., F. Schiemer & J. V. Ward, 1998. Conservation by restoration: the management concept for a river-floodplain system on the Danube River in Austria. Aquatic Conservation-Marine and Freshwater Ecosystems 8: 71–86.CrossRefGoogle Scholar
  186. Trèmolieres, M., R. Carbiener, A. Ortscheit & J. P. Klein, 1994. Changes in aquatic vegetation in Rhine floodplain streams in Alsace in relation to disturbance. Journal of Vegetation Science 5: 169–178.CrossRefGoogle Scholar
  187. Van Breemen, N., J. Mulder & C. T. Driscoll, 1983. Acidifi-cation and alkalinization of soils. Plant and Soil 75: 283–308.CrossRefGoogle Scholar
  188. Van den Berg, L. J. L., E. Dorland, P. Vergeer, M. A. C. Hart, R. Bobbink & J. G. M. Roelofs, 2005. Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytologist 166: 551–564.PubMedCrossRefGoogle Scholar
  189. Van den Brink, F. W. B., J. P. H. M. de Leeuw, G. van der Velde & G. M. Verheggen, 1993. Impact of hydrology on the chemistry and phytoplankton development in floodplain lakes along the lower Rhine and Meuse. Biogeochemistry 19: 103–128.CrossRefGoogle Scholar
  190. Van den Brink, F. W. B., M. M. J. Maenen, G. van der Velde & A. bij de Vaate, 1991. The (semi-)aquatic vegetation of still waters within the floodplains of the rivers Rhine and Meuse in The Netherlands: historical changes and the role of inundation. Verhandlungen der Internationale Vereinigung fü r theoretische und angewandte Limnologie 24: 2693–2699.Google Scholar
  191. Van den Brink, F. W. B. & G. van der Velde, 1993. Growth and morphology of four fresh-water macrophytes under the impact of raised salinity level of the Lower Rhine. Aquatic Botany 45: 285–297.CrossRefGoogle Scholar
  192. Van den Brink, F. W. B. & G. van der Velde, 1994. Impact of hydrology and water chemistry on floodplain lake communities along the lower Rhine and Meuse. Water Science and Technology 29: 57–60.Google Scholar
  193. Van den Brink, F. W. B., G. van der Velde, W. W. Bosman & H. Coops, 1995. Effects of substrate parameters on growthresponses of eight helophyte species in relation to flooding. Aquatic Botany 50: 79–97.CrossRefGoogle Scholar
  194. Van den Brink, F. W. B., M. M. van Katwijk & G. van der Velde, 1994. Impact of hydrology on phytoplankton and zooplankton community composition in floodplain lakes along the lower Rhine and Meuse. Journal of Plankton Research 16: 351–373.CrossRefGoogle Scholar
  195. Van der Hoek, D., A. J. E. M. van Mierlo & J. M. Van Groenendael, 2004. Nutrient limitation and nutrient-driven shifts in plant species composition in a species-rich fen meadow. Journal of Vegetation Science 15: 389–396.CrossRefGoogle Scholar
  196. Van der Lee, G. E. M., H. O. Venterink & N. E. M. Asselman, 2004. Nutrient retention in floodplains of the Rhine distributaries in The Netherlands. River Research and Applications 20: 315–325.CrossRefGoogle Scholar
  197. Van der Valk, A. G., 1981. Succession in wetlands-a Gleasonian approach. Ecology 62: 688–696.CrossRefGoogle Scholar
  198. Van der Welle, M. E. W., M. L. C. Cuppens, L. P. M. Lamers & J. G. M. Roelofs, (in press). Detoxifying toxicants: interactions between iron and sulfide toxicity in freshwater wetlands. Environmental Toxicology and Chemistry.Google Scholar
  199. Van Dijk, J., M. Stroetenga, L. Bos, P. M. van Bodegom, H. A. Verhoef & R. Aerts, 2004. Restoring natural seepage conditions on former agricultural grasslands does not lead to reduction of organic matter decomposition and soil nutrient dynamics. Biogeochemistry 71: 317–337.CrossRefGoogle Scholar
  200. Van Eck, W. H. J. M., J. P. M. Lenssen, H. M. van de Steeg, C. W. P. M. Blom & H. de Kroon, 2006. Seasonal dependent effects of flooding on plant species survival and zonation: a comparative study of 10 terrestrial grassland species. Hydrobiologia 565: 59–69.CrossRefGoogle Scholar
  201. Van Geest, G. J., H. Coops, R. M. M. Roijackers, A. D. Buijse & M. M. Scheffer, 2005. Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes. Journal of Applied Ecology 42: 251–260.CrossRefGoogle Scholar
  202. Van Geest, G. J., F. C. J. M. Roozen, H. Coops, R. M. M. Roijackers, A. D. Buijse, E. T. H. M. Peeters & M. Scheffer, 2003. Vegetation abundance in lowland flood plan lakes determined by surface area, age and connectivity. Freshwater Biology 48: 440–454.CrossRefGoogle Scholar
  203. Van Oorschot, M., C. Hayes & I. van Strien, 1998. The influence of soil desiccation on plant production, nutrient uptake and plant nutrient availability in two French floodplain grasslands. Regulated Rivers: Research and Management 14: 313–327.CrossRefGoogle Scholar
  204. Van Stokkom, H. T. C., A. J. M. Smits & R. S. E. W. Leuven, 2005. Flood defence in the Netherlands: a new era, a new approach. Water International 30: 76–87.CrossRefGoogle Scholar
  205. Van Wijck, C., C. J. de Groot & P. Grillas, 1992. The effect of anaerobic sediment on the growth of Potamogeton pectinatus l-The role of organic-matter, sulfide and ferrous iron. Aquatic Botany 44: 31–49.CrossRefGoogle Scholar
  206. Verhoeven, J. T. A., D. F. Whigham, R. van Logtestijn & J. O′Neill, 2001. A comparative study of nitrogen and phosphorus cycling in tidal and non-tidal riverine wetlands. Wetlands 21: 210–222.CrossRefGoogle Scholar
  207. Vervuren, P. J. A., C. W. P. M. Blom & H. de Kroon, 2003. Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. Journal of Ecology 91: 135–146.CrossRefGoogle Scholar
  208. Vervuren, P. J. A., S. M. J. H. Beurskens & C. W. P. M. Blom, 1999. Light acclimation, CO2 response and long-term capacity of underwater photosynthesis in three terrestrial plant species. Plant Cell and Environment 22: 959–968.CrossRefGoogle Scholar
  209. Vink, J. P. M., 2002. Measurement of heavy metal speciation over redox gradients in natural water-sediment interfaces and implications for uptake by benthic organisms. Environmental Science and Technology 36: 5130–5138.PubMedCrossRefGoogle Scholar
  210. Visser, E. J. W., L. A. C. J. Voesenek, B. B. Vartapetian & M. B. Jackson, 2003. Flooding and plant growth. Annals of Botany 91: 107–109.CrossRefGoogle Scholar
  211. Van der Hoek, D., A. J. E. M. van Mierlo & J. M. van Groenendael, 2004. Nutrient limitation and nutrient-driven shifts in plant species composition in a species-rich fen meadow. Journal of Vegetation Science 15: 389–396.CrossRefGoogle Scholar
  212. Ward, J. V., K. Tockner, D. B. Arscott & C. Claret, 2002. Riverine landscape diversity. Freshwater Biology 47: 517–539.CrossRefGoogle Scholar
  213. Wassen, M. J., H. G. M. O. Veterink & E. O. A. M. de Swart, 1995. Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. Journal of Vegetation Science 6: 5–16.CrossRefGoogle Scholar
  214. Wassen, M. J., R. E. van der Vliet & J. T. A. Verhoeven, 1998. Nutrient limitation in the Biebrza fens and floodplain (Poland). Acta Botanica Neerlandica 47: 241–253.Google Scholar
  215. Wassen, M. J., H. Olde Venterink, E. D. Lapshina & F. Tanneberger, 2005. Endangered plants persist under phosphorus limitation. Nature 437: 547–550.PubMedCrossRefGoogle Scholar
  216. Wassen, M. J.,W. H. M. Peeters & H. O. Venterink, 2002. Patterns in vegetation, hydrology, and nutrient availability in an undisturbed river floodplain in Poland. Plant Ecology 165: 27–43.CrossRefGoogle Scholar
  217. Wassen, M. J., W. H. M. Peeters & H. Olde Venterink, 2003. Patterns in vegetation, hydrology, and nutrient availability in an undisturbed river floodplain in Poland. Plant Ecology 165: 27–43.CrossRefGoogle Scholar
  218. Wheeler, B. D. & M. C. F. Proctor, 2000. Ecological gradients, subdivisions and terminology of north-west European mires. Journal of Ecology 88: 187–203.CrossRefGoogle Scholar
  219. Wijnhoven, S., G. van der Velde, R.S.E.W. Leuven & A. J. M. Smits, 2006. Modelling recolonisation of heterogeneous river floodplains by small mammals. Hydrobiologia 565: 135–152.CrossRefGoogle Scholar
  220. Winter, L. T., I. D. L. Foster, S. M. Charlesworth & J. A. Lees, 2001. Floodplain lakes as sinks for sediment-associated contaminants-A new source of proxy hydrological data? Science of the Total Environment 266: 187–194.PubMedCrossRefGoogle Scholar
  221. Young, E. O. & D. S. Ross, 2001. Phosphate release from seasonally flooded soils: a laboratory microcosm study. Journal of Environmental Quality 30: 91–101.PubMedCrossRefGoogle Scholar

Copyright information

© Springer2006 2006

Authors and Affiliations

  • R. Loeb
    • 1
  • A. W. Boxman
    • 1
  • L. P. M. Lamers
    • 1
    • 2
  • E. H. E. T. Lucassen
    • 1
    • 2
  • A. J. P. Smolders
    • 1
    • 2
  • J. G. M. Roelofs
    • 1
    • 2
  • A. M. Antheunisse
    • 3
  • M. Miletto
    • 4
  1. 1.Department of Aquatic Ecology and Environmental BiologyInstitute for Wetland and Water Research, Radboud University NijmegenNijmegenThe Netherlands
  2. 2.B-Ware Research CentreNijmegenThe Netherlands
  3. 3.Landscape Ecology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
  4. 4.Department of Microbial Wetland EcologyNetherlands Institute of Ecology (NIOO-KNAW), Centre for LimnologyNieuwersluisThe Netherlands

Personalised recommendations