Skip to main content

EXPLICIT TOWERS OF FUNCTION FIELDS OVER FINITE FIELDS

  • Chapter
Topics in Geometry, Coding Theory and Cryptography

Part of the book series: Algebra and Applications ((AA,volume 6))

Abstract

The purpose of this reviewarticle is to serve as an introduction and at the same time, as an invitation to the theory of towers of function fields over finite fields. More specifically, we treat here the case of explicit towers; i.e., towers where the function fields are given by explicit equations. The asymptotic behaviour of the genus and of the number of rational places in towers are important features for applications to coding theory and to cryptography (cf. Chapter 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Beelen, “Graphs and recursively defined towers of function fields”, J. Number Theory, Vol. 108, 217–240 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Ballet, “Curves with many points and multiplication complexity in any extension of IFq”, Finite Fields Appl., Vol. 5, 364–377 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Beelen and I. Bouw, “Asymptotically good towers and differential equations”, Compositio Mathematica, Vol. 141, 1405–1424 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Beelen, A. Garcia and H. Stichtenoth, “On towers of function fields of Artin-Schreier type”, Bull. Braz. Math. Soc., Vol. 35, 151–164 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Beelen, A. Garcia and H. Stichtenoth, “On towers of function fields over finite fields”, Arithmetic, Geometry and Coding Theory (AGCT 2003) (eds. Y. Aubry, G. Lachaud), Séminaires et Congrès 11, Société Mathématique de France, 1–20 (2005).

    Google Scholar 

  6. P. Beelen, A. Garcia and H. Stichtenoth, “On ramification and genus of recursive towers”, Portugal. Math., Vol. 62, 231–243 (2005).

    MATH  MathSciNet  Google Scholar 

  7. P. Beelen, A. Garcia and H. Stichtenoth, “Towards a classification of recursive towers of function fields over finite fields”, Finite Fields Appl., Vol. 12, 56–77 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Bezerra, A. Garcia, H. Stichtenoth, “An explicit tower of function fields over cubic finite fields and Zink’s lower bound”, J. Reine Angew. Math., Vol. 589, 159–199 (2005).

    MATH  MathSciNet  Google Scholar 

  9. J. Bezerra and A. Garcia, “A tower with non-Galois steps which attains the Drinfeld-Vladut bound”, J. Number Theory, Vol. 106, 142–154 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Bombieri, “Counting points on curves over finite fields”, Sém. Bourbaki, Exp. No. 430, (1972/73).

    Google Scholar 

  11. M. Deuring, “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”, Abh. Math. Sem. Hamburg, Vol. 14, 197–272 (1941).

    MATH  MathSciNet  Google Scholar 

  12. V. G. Drinfeld and S. G. Vladut, “The number of points of an algebraic curve”, Funktsional. Anal. i Prilozhen, Vol. 17, 68–69 (1983). [Funct. Anal. Appl., Vol. 17, 53–54 (1983).]

    Article  MATH  MathSciNet  Google Scholar 

  13. I. Duursma, B. Poonen and M. Zieve, “Everywhere ramified towers of global function fields”, Proceedings of the 7th International Conference on Finite Fields and Applications Fq7, Toulouse (eds. G. Mullen et al.), LNCS, Vol. 2948, 148–153 (2004).

    MATH  MathSciNet  Google Scholar 

  14. N. Elkies, “Explicit modular towers”, Proceedings of the 35th Annual Allerton Conference on Communication, Control and Computing (eds. T. Basar et al.) Urbana, IL, 23–32 (1997).

    Google Scholar 

  15. N. Elkies, “Excellent nonlinear codes from modular curves”, STOC’ 01: Proceedings of the 33rd Annual ACM Symp. on Theory of Computing, Hersonissos, Crete, Greece, 200–208.

    Google Scholar 

  16. N. Elkies, “Explicit towers of Drinfeld modular curves”, European Congress of Mathematics, vol.II (eds. C.Casacuberta et al.), Birkhäuser, Basel, 189–198 (2001).

    Google Scholar 

  17. N. Elkies, “Still better nonlinear codes from modular curves”, preprint, 2003.

    Google Scholar 

  18. N. Elkies, E. Howe, A. Kresch, B. Poonen, J. Wetherell and M. Zieve, “Curves of every genus with many points, II: Asymptotically good families”, Duke Mat. J., Vol. 122, 399–422 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Frey, M. Perret and H. Stichtenoth, “On the different of abelian extensions of global fields”, Coding Theory and Algebraic Geometry, Proceedings, Luminy, 1991 (eds. H. Stichtenoth et al.), Springer LNM, Vol. 1518, 26–32 (1992).

    Google Scholar 

  20. A. Garcia and H. Stichtenoth, “A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound”, Invent. Math., Vol. 121, 211–222 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Garcia and H. Stichtenoth, “On the asymptotic behaviour of some towers of function fields over finite fields”, J. Number Theory, Vol. 61, 248–273 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Garcia, H. Stichtenoth, “Asymptotically good towers of function fields over finite fields”, C. R. Acad. Sci. Paris, t. 322, Sèr. I, 1067–1070 (1996).

    Google Scholar 

  23. A. Garcia, H. Stichtenoth, “Skew pyramids of function fields are asymptotically bad”, Coding Theory, Cryptography and Related Topics, Proceedings of a Conference in Guanajuato, 1998 (eds. J. Buchmann et al.), Springer-Verlag, Berlin, 111–113 (2000).

    Google Scholar 

  24. A. Garcia and H. Stichtenoth, “On tame towers over finite fields”, J. Reine Angew. Math., Vol. 557, 53–80 (2003).

    MATH  MathSciNet  Google Scholar 

  25. A. Garcia and H. Stichtenoth, “Asymptotics for the genus and the number of rational places in towers of function fields over a finite field”, Finite Fields Appl., Vol. 11, 434–450 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Garcia and H. Stichtenoth, “Some Artin-Schreier towers are easy”, Moscow Math. J., to appear.

    Google Scholar 

  27. A. Garcia and H. Stichtenoth, “On the Galois closure of towers”, preprint, 2005.

    Google Scholar 

  28. A. Garcia, H. Stichtenoth and M. Thomas, “On towers and composita of towers of function fields over finite fields”, Finite Fields Appl., Vol. 3, 257–274 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  29. G. van der Geer, “Curves over finite fields and codes”, European Congress of Mathematics, vol.II (eds. C.Casacuberta et al.), Birkhäuser, Basel, 189–198 (2001).

    Google Scholar 

  30. G. van der Geer and M. van der Vlugt, “An asymptotically good tower of curves over the field with eight elements”, Bull. London Math. Soc., Vol. 34, 291–300 (2002).

    MATH  MathSciNet  Google Scholar 

  31. H. Hasse, “Zur Theorie der abstrakten elliptischen Funktionenkörper III”, J. Reine Angew. Math., Vol. 175, 193–208 (1936).

    MATH  Google Scholar 

  32. Y. Ihara, “Some remarks on the number of rational points of algebraic curves over finite fields”, J. Fac. Sci. Tokyo, Vol. 28, 721–724 (1981).

    MATH  MathSciNet  Google Scholar 

  33. W.-C. W. Li, H. Maharaj and H. Stichtenoth, “New optimal towers of function fields over small finite fields”, with an appendix by N.D. Elkies. Proceedings of the 5th Int. Symp. On Algorithmic Number Theory, ANTS-5 (eds. C. Fieker and D. R. Kohel), LNCS, Vol. 2369, 372–389 (2002).

    MATH  MathSciNet  Google Scholar 

  34. S. Ling, H. Stichtenoth and S. Yang, “A class of Artin-Schreier towers with finite genus”, Bull. Braz. Math. Soc., Vol. 36, 393–401 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  35. J. H. van Lint, Introduction to Coding Theory, Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  36. H.W. Lenstra Jr., “On a problem of Garcia, Stichtenoth and Thomas”, Finite Fields Appl., Vol. 8, 1–5 (2001).

    Google Scholar 

  37. H. Maharaj and J. Wulftange, “On the construction of tame towers over finite fields”, J. Pure Appl. Alg., Vol. 199, 197–218 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  38. Y. J. Manin, “What is the maximal number of points on a curve over F2?, J. Fac. Sci. Univ. Tokyo, Vol. 28, 715–720 (1981).

    MATH  MathSciNet  Google Scholar 

  39. R. Matsumoto, “Improvement of the Ashikmin-Litsyn-Tsfasman bound for quantum codes”, IEEE Trans. Inform. Theory, Vol. 48, 2122–2124 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  40. H. Niederreiter and F. Özbudak, “Constructive asymptotic codes with an improvement on the Tsfasman-Vladut-Zink and Xing bound”, Coding, Cryptography and Combinatorics (eds. K. Q. Feng et al.), Progress in Computer Science and Applied Logic, Vol. 23, Birkhäuser, Basel, 259–275 (2004).

    Google Scholar 

  41. H. Niederreiter and F. Özbudak, “Further improvements on asymptotic bounds for codes using distinguished divisors”, Finite Fields Appl., to appear.

    Google Scholar 

  42. H. Niederreiter and C. P. Xing, “Curve sequences with asymptotically many rational points”, Contemporary Mathematics, Vol. 245, 3–14 (1999).

    MATH  MathSciNet  Google Scholar 

  43. H. Niederreiter and C. P. Xing, Rational points of curves over finite fields, Cambridge Univ. Press, Cambridge, 2001.

    Google Scholar 

  44. H. Niederreiter and C. P. Xing, “Quasirandom points and global function fields”, Finite Fields and Applications, Cambridge University Press, Cambridge, London Math. Soc. Lecture Notes Series, Vol. 233, 269–296 (1996).

    Google Scholar 

  45. R. Pellikaan, H. Stichtenoth and F. Torres, “Weierstrass semigroups in an asymptotically good tower of function fields”, Finite Fields Appl., Vol. 4, 381–392 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  46. J.-P. Serre, “Sur le nombre des points rationelles d’une courbe algébrique sur une corps fini”, C. R. Acad. Sci. Paris, Vol. 296, 397– 402 (1983).

    MATH  MathSciNet  Google Scholar 

  47. J.-P. Serre, “Rational points on curves over finite fields”, unpublished lecture notes by F.Q. Gouvea, Harvard University, 1985.

    Google Scholar 

  48. H. Stichtenoth, Algebraic function fields and codes, Springer Verlag, Berlin 1993.

    MATH  Google Scholar 

  49. H. Stichtenoth, “Explicit constructions of towers of function fields with many rational places”, European Congress of Mathematics, Vol. II (eds. C.Casacuberta et al.), Birkhäuser, Basel, 219–224 (2001).

    Google Scholar 

  50. H. Stichtenoth, “Transitive and self-dual codes attaining the Tsfasman-Vladut-Zink bound”, IEEE Trans. Inform. Theory, Vol. 52, 2218–2214 (2006).

    Article  MathSciNet  Google Scholar 

  51. H. Stichtenoth and C. P. Xing, “Excellent non-linear codes from algebraic function fields”, IEEE Trans. Inform. Theory, Vol. 51, 4044–4046 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  52. K. O. Stöhr and J. F. Voloch, “Weierstrass points and curves over finite fields”, Proc. London Math. Soc., Vol. 52, 1–19 (1986).

    MATH  MathSciNet  Google Scholar 

  53. A. Temkine, “Hilbert class field towers of function fields over finite fields and lower bounds on A(q)”, J. Number Theory, Vol. 87, 189–210 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  54. M. A. Tsfasman, S. G. Vladut and T. Zink, “Modular curves, Shimura curves and Goppa codes better than the Varshamov-Gilbert bound”, Math. Nachr., Vol. 109, 21–28 (1982).

    MATH  MathSciNet  Google Scholar 

  55. M. A. Tsfasman and S. G. Vladut, Algebraic-geometric codes, Kluwer Acad. Publ., Dordrecht/ Boston/London, 1991.

    MATH  Google Scholar 

  56. A. Weil, Sur les courbes algébriques et les variétés qui s’en déduisent, Act. Sc. et Industrielles, Vol. 1041. Hermann, Paris, 1948.

    Google Scholar 

  57. J. Wulftange, Zahme Türme algebraischer Funktionenkörper, Ph.D. thesis, Essen, 2003.

    Google Scholar 

  58. J. Wulftange, “On the construction of some towers over finite fields”, Proceedings of the 7th International Conference on Finite Fields and Applications Fq7, Toulouse, (eds. G.Mullen et al.), LNCS, Vol. 2948, 154 –165 (2004).

    MATH  MathSciNet  Google Scholar 

  59. C. P. Xing, “Nonlinear codes from algebraic curves improving the Tsfasman-Vladut-Zink bound”, IEEE Trans. on Information Theory, Vol. 49, 1653–1657 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  60. A. Zaytsev, “The Galois closure of the Garcia-Stichtenoth tower”, preprint, 2005.

    Google Scholar 

  61. T. Zink, “Degeneration of Shimura surfaces and a problem in coding theory”, Fundamentals of Computation Theory, (ed. L. Budach), LNCS, Vol. 199, 503–511(1985).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Garcia, A., Stichtenoth, H. (2006). EXPLICIT TOWERS OF FUNCTION FIELDS OVER FINITE FIELDS. In: Garcia, A., Stichtenoth, H. (eds) Topics in Geometry, Coding Theory and Cryptography. Algebra and Applications, vol 6. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5334-4_1

Download citation

Publish with us

Policies and ethics