Skip to main content

RATIOMETRIC TEMPERATURE MEASUREMENT USING BIPOLAR TRANSISTORS

  • Chapter

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

The output of a smart temperature sensor is a digital representation of its temperature. This requires a ratiometric temperature measurement: the ratio of a temperature-dependent voltage and a reference voltage is determined using an analog-to-digital converter. This chapter describes how substrate bipolar transistors in CMOS technology can be used to accurately generate these voltages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. C. M. Meijer, “Integrated circuits and components for bandgap references and temperature transducers,” Ph.D. dissertation, Delft University of Technology, Delft, The Netherlands, Mar. 1982.

    Google Scholar 

  2. A. Bakker and J. H. Huijsing, High-Accuracy CMOS Smart Temperature Sensors. Boston: Kluwer Academic Publishers, 2000.

    Google Scholar 

  3. J. V. Nicholas and D. R. White, Traceable Temperatures. Chichester, England: John Wiley & Sons, 1994.

    Google Scholar 

  4. A. Hastings, The an of analog layout. New Jersey: Prentice Hall, 2001.

    Google Scholar 

  5. K. B. Klaassen, “Digitally controlled absolute voltage division,” IEEE Transactions on Instrumentation and Measurement, vol. 24, no. 2, pp. 106–112, June 1975.

    Article  Google Scholar 

  6. R. J. van der Plassche, “Dynamic element matching for high-accuracy monolithic D/A converters,” IEEE Journal of Solid-State Circuits, vol. SC-11, no. 6, pp. 795–800, Dec. 1976.

    Article  Google Scholar 

  7. G. C. M. Meijer, G. Wang, and F. Fruett, “Temperature sensors and voltage references implemented in CMOS technology,” IEEE Sensors Journal, vol. 1, no. 3, pp. 225–234, Oct. 2001.

    Article  Google Scholar 

  8. P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits. Chichester, England: John Wiley & Sons, 2001.

    Google Scholar 

  9. B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.

    Google Scholar 

  10. R. W. Dutton and D. A. Divekar, “Bipolar models for statistical IC design,” in Process and device modeling for integrated circuit design, F. van de Wiele et al., Eds. Addison-Wesley, 1977, pp. 461–517.

    Google Scholar 

  11. B. Gilbert, “Monolithic voltage and current references: theme and variations,” in Analog Circuit Design, J. H. Huijsing et al., Eds. Boston: Kluwer Academic Publishers, 1996, pp. 269–352.

    Google Scholar 

  12. J. Michejda and S. K. Kim, “A precision CMOS bandgap reference,” IEEE Journal of Solid-State Circuits, vol. SC-19, no. 6, pp. 1014–1021, Dec. 1984.

    Article  Google Scholar 

  13. R. J. Fronen, “Band-gap reference current source with compensation for saturation current spread of bipolar transistors,” U.S. Patent 5 581 174, Dec. 2, 1994.

    Google Scholar 

  14. R. Amador, A. Polanco, H. Hernández, E. González, and A. Nagy, “Technological compensation circuit for accurate temperature sensor,” Sensors and Actuators, vol. 69, no. 2, pp. 172–177, Aug. 1998.

    Article  Google Scholar 

  15. R. Amador, A. Polanco, H. Hernández, E. González, and A. Nagy, “Reducing VBE wafer spread of bipolar transistor via a compensation circuit,” Electronics Letters, vol. 28, no. 15, pp. 1378–1379, July 1992.

    Google Scholar 

  16. M. A. P. Pertijs and J. H. Huijsing, “Bitstream trimming of a smart temperature sensor,” in Proc. IEEE Sensors, Oct. 2004, pp. 904–907.

    Google Scholar 

  17. G. v. d. Horn and J. H. Huijsing, Integrated Smart Sensors: Design and Calibration. Boston: Kluwer Academic Publishers, 1998.

    Google Scholar 

  18. F. Fruett and G. C. M. Meijer, The Piezojunction Effect in Silicon Integrated Circuits and Sensors. Boston: Kluwer Academic Publishers, May 2002.

    Google Scholar 

  19. B. Abesingha, G. A. Rincon-Mora, and D. Briggs, “Voltage shift in plastic-packaged bandgap references,” IEEE Transactions on Circuits and Systems—Part II: Analog and Digital Signal Processing, vol. 49, no. 10, pp. 681–685, Oct. 2002.

    Article  Google Scholar 

  20. A. Elshabini-Riad and I. A. Bhutta, “Lightly trimming the hybrids,” IEEE Circuits and Devices Magazine, vol. 9, no. 4, pp. 30–34, July 1993.

    Article  Google Scholar 

  21. J. A. Babcock, D. W. Feldbaumer, and V. M. Mercier, “Polysilicon resistor trimming for packaged integrated circuits,” in Proc. IEDM, Dec. 1993, pp. 247–250.

    Google Scholar 

  22. G. Erdi, “A precision trim technique for monolithic analog circuits,” IEEE Journal of Solid-State Circuits, vol. SC-10, no. 6, pp. 412–416, Dec. 1975.

    Article  Google Scholar 

  23. J. Teichmann, K. Burger, W. Hasche, J. Herrfurth, and G. Täschner, “One time programming (OTP) with zener diodes in CMOS processes,” in Proc. ESSDERC, Sept. 2003, pp. 433–436.

    Google Scholar 

  24. G. A. Rincón-Mora, Voltage References. Piscataway, New York: IEEE Press, 2002.

    Google Scholar 

  25. M. de Wit, K.-S. Tan, and R. K. Hester, “A low-power 12-b analog-to-digital converter with on-chip precision trimming,” IEEE Journal of Solid-State Circuits, vol. 28, no. 4, pp. 455–461, Apr. 1993.

    Article  Google Scholar 

  26. A. F. Murray and L. W. Buchan, “A user's guide to non-volatile, on-chip analogue memory,” IEE Electronics & Communication Engineering Journal, vol. 10, no. 2, pp. 53–63, Apr. 1998.

    Article  Google Scholar 

  27. E. Säckinger and W. Guggenbühl, “An analog trimming circuit based on a floating-gate device,” IEEE Journal of Solid-State Circuits, vol. 23, no. 6, pp. 1437–1440, Dec. 1988.

    Article  Google Scholar 

  28. G. Wang and G. C. M. Meijer, “Temperature characteristics of bipolar transistors fabricated in CMOS technology,” Sensors and Actuators, vol. 87, pp. 81–89, Dec. 2000.

    Article  Google Scholar 

  29. G. A. Rincón-Mora and P. E. Allen, “A 1.1-V current-mode and piecewise-linear curvature-corrected bandgap reference,” IEEE Journal of Solid-State Circuits, vol. 33, no. 10, pp. 1551–1554, Oct. 1998.

    Article  Google Scholar 

  30. “MAX6325 data sheet,” Maxim Int. Prod., Dec. 2003, www.maxim-ic.com.

    Google Scholar 

  31. “AD588 data sheet,” Analog Devices Inc., Feb. 2003, www.analog.com.

    Google Scholar 

  32. A. P. Brokaw, “A simple three-terminal IC bandgap reference,” IEEE Journal of Solid-State Circuits, vol. SC-9, no. 6, pp. 388–393, Dec. 1974.

    Article  Google Scholar 

  33. B.-S. Song and P. R. Gray, “A precision curvature-compensated CMOS bandgap reference,” IEEE Journal of Solid-State Circuits, vol. SC-18, no. 6, pp. 634–643, Dec. 1983.

    Article  Google Scholar 

  34. I. M. Filanovsky and Y. F. Chan, “BiCMOS cascaded bandgap voltage reference,” in Proc. Midwest Symposium on Circuits and Systems, vol. 2, Aug. 1996, pp. 943–946.

    Google Scholar 

  35. J. T. Sundby, “Low voltage CMOS bandgap with new trimming and curvature correction methods,” U.S. Patent 5 325 045, June 28, 1994.

    Google Scholar 

  36. C. Falconi, A. D'Amico, C. D. Natale, and M. Faccio, “Low cost curvature correction of bandgap references for integrated sensors,” Sensors and Actuators, vol. 117, no. 1, pp. 127–136, Jan. 2005.

    Article  Google Scholar 

  37. S. R. Lewis and A. P. Brokaw, “Curvature correction of bipolar bandgap references,” U.S. Patent 4 808 908, Feb. 28, 1989.

    Google Scholar 

  38. J. M. Audy, “Bandgap voltage reference circuit and method with low TCR resistor in parallel with high TCR and in series with low TCR portions of tail resistor,” U.S. Patent 5 291 122, Mar. 1, 1994.

    Google Scholar 

  39. J. M. Audy, “3rd order curvature corrected bandgap cell,” in Proc. Midwest Symposium on Circuits and Systems, vol. 1, Aug. 1995, pp. 397–400.

    Google Scholar 

  40. K. N. Leung, P. K. T. Mok, and C. Y. Leung, “A 2-V 23-muA 5.3-ppm/°C curvature-compensated CMOS bandgap voltage reference,” IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 561–564, Mar. 2003.

    Article  Google Scholar 

  41. R. J. Widlar, “Low voltage techniques,” IEEE Journal of Solid-State Circuits, vol. SC-13, no. 6, pp. 838–846, Dec. 1978.

    Article  Google Scholar 

  42. G. C. M. Meijer, P. C. Schmale, and K. van Zalinge, “A new curvature-corrected bandgap reference,” IEEE Journal of Solid-State Circuits, vol. SC-17, no. 6, pp. 1139–1143, Dec. 1982.

    Article  Google Scholar 

  43. S. L. Lin and C. A. T. Salama, “A VBE (T) model with application to bandgap reference design,” IEEE Journal of Solid-State Circuits, vol. SC-20, no. 6, pp. 1283–1285, Dec. 1985.

    Article  Google Scholar 

  44. P. Malcovati, F. Maloberti, C. Fiocchi, and M. Pruzzi, “Curvature-compensated BiCMOS bandgap with 1-V supply voltage,” IEEE Journal of Solid-State Circuits, vol. 36, no. 7, pp. 1076–1081, July 2001.

    Article  Google Scholar 

  45. C. Hagleitner, “CMOS single-chip gas detection system comprising capacitive, calori-metric and mass-sensitive microsensors,” Ph.D. dissertation, Swiss Federal Institute of Technology, Zurich, Switzerland, 2002.

    Google Scholar 

  46. C. R. Palmer and R. C. Dobkin, “A curvature corrected micropower voltage reference,” in Dig. Techn. Papers ISSCC, Feb. 1981, pp. 58–59.

    Google Scholar 

  47. I. Lee, G. Kim, and W. Kim, “Exponential curvature-compensated BiCMOS bandgap references,” IEEE Journal of Solid-State Circuits, vol. 29, no. 11, pp. 1396–1403, Nov. 1994.

    Google Scholar 

  48. S.-Y. Chin and C.-Y. Wu, “A new type of curvature-compensated CMOS bandgap voltage references,” in Proc. Int. Symp. on VLSI Techn., May 1991, pp. 398–402.

    Google Scholar 

  49. O. Salminen and K. Halonen, “The higher order temperature compensation of bandgap voltage references,” in Proc. ISCAS, vol. 3, May 1992, pp. 1388–1391.

    Google Scholar 

  50. G. C. M. Meijer et al., “A three-terminal integrated temperature transducer with microcomputer interfacing,” Sensors and Actuators, vol. 18, pp. 195–206, June 1989.

    Article  Google Scholar 

  51. M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A high-accuracy temperature sensor with second-order curvature correction and digital bus interface,” in Proc. ISCAS, May 2001, pp. 368–371.

    Google Scholar 

  52. M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “Non-linear signal correction,” U.S. Patent 6 456 145, Sept. 24, 2002.

    Google Scholar 

  53. P. Malcovati, C. A. Leme, P. O'Leary, F. Maloberti, and H. Baltes, “Smart sensor interface with A/D conversion and programmable calibration,” IEEE Journal of Solid-State Circuits, vol. 29, no. 8, pp. 963–966, Aug. 1994.

    Article  Google Scholar 

  54. I. M. Filanovsky and S. S. Cai, “BiCMOS bandgap voltage reference with base current compensation,” Int. J. Electronics, vol. 81, no. 5, pp. 565–570, 1996.

    Article  Google Scholar 

  55. M. A. P. Pertijs and J. H. Huijsing, “Bias circuits,” U.K. Patent Application 0420484.8, 2005.

    Google Scholar 

  56. B. Song and P. R. Gray, “A precision curvature-compensated CMOS bandgap reference,” in Dig. Techn. Papers ISSCC, Feb. 1983, pp. 240–241.

    Google Scholar 

  57. I. Opris, “Series resistance compensation in translinear circuits,” IEEE Transactions on Circuits and Systems—Part I: Fundamental Theory and Applications, vol. 45, no. 1, pp. 91–94, Jan. 1998.

    Article  Google Scholar 

  58. P. A. H. Hart, Ed., Bipolar and Bipolar-MOS Integration. Amsterdam, The Netherlands: Elsevier, 1994.

    Google Scholar 

  59. J. M. Audy and B. Gilbert, “Multiple sequential excitation temperature sensing method and apparatus,” U.S. Patent 5 195 827, Mar. 4, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Pertijs, M.A., Huijsing, J.H. (2006). RATIOMETRIC TEMPERATURE MEASUREMENT USING BIPOLAR TRANSISTORS. In: PRECISION TEMPERATURE SENSORS IN CMOS TECHNOLOGY. Analog Circuits and Signal Processing. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5258-8_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5258-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5257-6

  • Online ISBN: 978-1-4020-5258-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics