Skip to main content

Engineering of Cell Proliferation Via Myc Modulation

  • Chapter
Systems Biology

Part of the book series: Cell Engineering ((CEEN,volume 5))

  • 1528 Accesses

Abstract

The use of metabolic engineering for the enhancement and control of cell proliferation is a rapidly developing field in biotechnology. Great research interest has been directed towards the development of proliferation and apoptosis controlled cell lines with high cell density, regulated proliferation, apoptosis resistance, and easy adaptation into serum free cultures. These are some of the desirable characteristics for the cost effective production of biopharmaceuticals, mainly because genetically modified cell lines can afford greater efficiency and control. Some of the strategies employed by metabolic engineering for the management of cell proliferation include the control of external factors in the culture environment, suppression of growth inhibitors, and over-expression of important regulators of proliferation and apoptosis pathways, such as growth factors and genes. c-myc is such a prime candidate to achieve these objectives. In its role as a transcription factor Myc can regulate an extensive array of biological activities by modulating the expression of a large number of genes that in turn regulate multiple downstream events. More importantly, Myc can regulate cell proliferation and transform cells in such a manner as to consider the advantages of utilising its unique characteristics into the development of cell lines with major significance in animal cell culture biotechnology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Majno, G., and Joris, I. (1995) Apoptosis, oncosis, and necrosis-an overview of cell death. Amer.J.Path., 146 3–15.

    PubMed  CAS  Google Scholar 

  2. Kerr, J.F.R., Wyllie, A.H., and Currie, A.R. (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. British Journal of Cancer, 26 239–260.

    PubMed  CAS  Google Scholar 

  3. Al-Rubeai, M., Mills, D., and Emery, A.N. (1990) Electron microscopy of hybridoma cells with special regard to monoclonal antibody production. Cytotechnology, 4 13–28.

    Article  PubMed  CAS  Google Scholar 

  4. Alberts, B., Johnson A., Lewis, J., Raff, M., Roberts K., and Walter P. (2002) The Cell Cycle and Programmed Cell Death, in Molecular Biology of the Cell, Fourth Edition. Garland Science, Taylor & Francis Group, New York, pp 983–1025.

    Google Scholar 

  5. Evan, G.I., Harrington, E., McCarthy, N., Gilbert, C., Benedict, M.A., and Nuñez, G. (1996) Integrated control of cell proliferation and apoptosis by oncogenes. In N.S.B., Thomas ed. Apoptosis and cell cycle control in cancer. BIOS Scientific Publishers, Oxford, pp 109–129.

    Google Scholar 

  6. Hayward, W.S., Neel, B.G., and Astrin, S.M. (1981) Activation of a cellular oncogene by promoter insertion in ALV-induced lymphoid leucosis. Nature, 290 475–480.

    Article  PubMed  CAS  Google Scholar 

  7. Cole, M.D. (1986) The myc oncogenes: its role in transformation and differentiation. Ann. Rev. of Genetics, 20 361–384.

    Article  CAS  Google Scholar 

  8. Small, M.B., Hay, N., Schwab, M., and Bishop, M.J. (1987) Neoplastic transformation by the human gene N-myc. Mol. Cell. Biol., 7 1638–1645.

    PubMed  CAS  Google Scholar 

  9. Spencer, C.A., and Groudine, M. (1991) Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res., 56 1–48.

    Article  PubMed  CAS  Google Scholar 

  10. Bouchard, C., Staller, P., and Eilers, M. (1998) Control of proliferation by Myc. Trends Cell Biol., 8 202–206.

    Article  PubMed  CAS  Google Scholar 

  11. Furhrmann, G., Rosenberg, G., Grusch, M., Klein, N., Hofmann, J., and Krupitza, G. (1999) The MYC dualism in growth and death. Mutation Research, 437 205–217.

    Article  Google Scholar 

  12. Cochran, B.H., Reffel, A., and Stiles, C. (1983) Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell, 33 939–947.

    Article  PubMed  CAS  Google Scholar 

  13. Blackwood, E.M., Kretzner, L., and Eisenman, R.N. (1992) Myc and Max function as a nucleoprotein complex. Curr. Opin. Genet. Dev., 2 227–235.

    Article  PubMed  CAS  Google Scholar 

  14. Kato, G.J., and Dang, C.V. (1992) Function of the c-Myc oncoprotein. FASEB J., 6 3065–3072.

    PubMed  CAS  Google Scholar 

  15. Amati, B., Dalton, S., Brooks, M.W., Littlewood, T.D., Evan, G.I., and Land. (1992) Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature, 359 423–426.

    Article  PubMed  CAS  Google Scholar 

  16. Meichle, A., Philipp, A., and Eilers, M. (1992) The functions of Myc proteins. Biochim. Biophys. Acta, 1114 129–146.

    PubMed  CAS  Google Scholar 

  17. Lüscher, B., and Larsson, L.G. (1999) The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation. Oncogene, 18 2955–2966.

    Article  PubMed  Google Scholar 

  18. Grandori, C., Cowley, S.M., James, L.P., and Eisenman, R.N. (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Ann. Rev. Cell Dev. Biol., 16 653–699.

    Article  CAS  Google Scholar 

  19. Cole, M.D., and McMahon, S.B. (1999) The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene, 18 2916–2924.

    Article  PubMed  CAS  Google Scholar 

  20. Baudino, T.A., and Cleveland, J.L. (2001) The Max network gone Mad. Mol. Cell. Biol., 21 691–702.

    Article  PubMed  CAS  Google Scholar 

  21. Marcu, K.B., Bossone, S.A., and Patel, A.J. (1992) myc function and regulation. Ann. Rev. of Biochem., 61 809–860.

    Article  CAS  Google Scholar 

  22. Nasi, S., Ciarapica, R., Jucker, R., Rosati, J., and Soucek, L. (2001) Making decisions through Myc. FEBS Lett., 490 153–162.

    Article  PubMed  CAS  Google Scholar 

  23. Rabbits, P.H., Watson, J.V., Lamond, A., Forster, A., Stinson, M.A., Evan, G., Fischer, W., Atherton, E., Sheppard, R., and Rabbits, T.H. (1985) Metabolism of c-myc gene products: c-myc mRNA and protein expression in the cell cycle. EMBO J. 4 2009–2015.

    Google Scholar 

  24. Mateyak, M.K., Obaya, A.J., Adachi, S., and Sedivy, J.M. (1997) Phenotypes of c-myc deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ., 8 1039–1048b.

    PubMed  CAS  Google Scholar 

  25. Seth, A., Gupta, S., and Davis, R.J. (1993) Cell cycle regulation of the c-Myc transcriptional activation domain. Mol. Cell. Biol., 13 4125–4136.

    PubMed  CAS  Google Scholar 

  26. Born, T.L., Frost, J., Schonthal, A., Prendergast, G., and Feramisco, J.R. (1994) C-Myc cooperates with activated Ras to induce the cdc2 promoter. Mol. Cell. Biol., 14 5710–5718.

    PubMed  CAS  Google Scholar 

  27. Harrington, E.A., Bennet, M.R., Fanidi, A., and Evan, G.I. (1994) C-Myc induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 13 3286–3295.

    PubMed  CAS  Google Scholar 

  28. Lemaitre, J.M., Buckel, R.S., and Mechali, M. (1996) C-Myc in the control of cell proliferation and embryonic development. Adv. Cancer Res., 70 96–144.

    Google Scholar 

  29. Amati, B., Konstantinos, A., and Vlach, J. (1998) Myc and the cell cycle. Front. Biochem. Sci., 3 d250–d268.

    CAS  Google Scholar 

  30. Obaya, A.J., Mateyak, M.K., and Sedivy, J.M. (1999) Mysterious liaisons: the relationship between c-Myc and the cell cycle. Oncogene, 18 2934–2941.

    Article  PubMed  CAS  Google Scholar 

  31. Dang, C.V. (1999) C-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol., 19 1–11.

    PubMed  CAS  Google Scholar 

  32. Johnston, L.A., Prober, D.A., Cheng, P.F., Edgar, B.A., Eisenman, R.N., and Gallant, P (1999) Drosophila myc regulates growth during development. Cell, 98 779–790.

    Article  PubMed  CAS  Google Scholar 

  33. Schuhmacher, M., Staege, M.S., Pajic, A., Polack, A., Weidle, U.H., Bornkamm, G.W., Eick, D., and Khlhuber, F. (1999) Control of cell growth by c-Myc in the absence of cell division. Curr. Biol., 9 1255–1258.

    Article  PubMed  CAS  Google Scholar 

  34. Rosenwald, I.N., Rhoads, D.B., Callanan, L.D., Isselbacher, K.J., and Schmidt, E.V. (1993) Increased expression of eukaryotic translation initiation factors eIF–4E and eIF-2 alpha in response to growth induction by c-myc. Proc. Natl. Acad. Sci. USA, 90 6175–6178.

    Article  PubMed  CAS  Google Scholar 

  35. Jones, R.M., Branda, J., Johnston, K.A., Polymenis M., Gadd, M., Rustgi, A., Callanan, L., and Schmidt, E.V. (1996) An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol. Cell Biol., 16 4754–4764.

    PubMed  CAS  Google Scholar 

  36. Coller, H.A., Grandori, C., Tamayo, P., Colbert, T., Lander, E.S., Eisenman, R.N., and Golub, T.R. (2000) Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling and adhesion. Proc. Natl. Acad. Sci. USA, 97 3260–3265.

    Article  PubMed  CAS  Google Scholar 

  37. Schmidt, E.V. (1999) The role of c-myc in cellular growth control. Oncogene, 18 2988–2996.

    Article  PubMed  CAS  Google Scholar 

  38. Gomez-Roman, N., Grandori, C., Eisenman, R.N., and White, R.J. (2003) Direct activation of RNA polymerase III transcription by c-Myc. Nature, 421 290–294.

    Article  PubMed  CAS  Google Scholar 

  39. Hoffman, B., and Liebermann, D.A. (1998) The proto-oncogene c-myc and apoptosis. Oncogene, 17: 3351–3357.

    Article  PubMed  Google Scholar 

  40. Prendergast, G.C. (1999) Mechanisms of apoptosis by c-Myc. Oncogene, 18 2967–2987.

    Article  PubMed  CAS  Google Scholar 

  41. Evan, G., and Littlewood, T. (1998) A matter of life and cell death. Science, 281 1317–1326.

    Article  PubMed  CAS  Google Scholar 

  42. Evan, G.I., and Vousden, K.H. (2001) Proliferation, cell cycle and apoptosis in cancer. Nature, 411 342–348.

    Article  PubMed  CAS  Google Scholar 

  43. Amati, B., Littlewood, T.D., Evan, G.I., and Land, H. (1993) The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J., 12 5083–5087.

    PubMed  CAS  Google Scholar 

  44. Hueber, A.O., Zornig, M., Lynon, D., Suda, T., Nagata, S., and Evan, G.I. (1997) Requirement for the CDC95 receptor-ligand pathway in c-Myc induced apoptosis. Science, 278 1305–1309.

    Article  PubMed  CAS  Google Scholar 

  45. Juin, P., Hueber, A.O., Littlewood, T., and Evan, G. (1999) C-Myc sensitization to apoptosis is mediated through cytochrome c release. Genes and Dev., 13 1367–1381.

    PubMed  CAS  Google Scholar 

  46. Soucie, E.L., Annis, M.G., Sedivy, J., Filmus, J., Leber, B., Andrews, D.W., and Penn, L.Z. (2001) Myc potentiates apoptosis by stimulating Bax activity at the mitochondria. Mol. Cell. Biol., 21 4725–4736.

    Article  CAS  Google Scholar 

  47. Pelengaris, S., and Khan, M. (2003) The many faces of c-MYC. Arch. Biochem. Bioph., 416 129–136.

    Article  CAS  Google Scholar 

  48. Zhu, L., and Skoultchi, A.I. (2001) Co-ordinating cell proliferation and differentiation. Curr. Opin. Genet. Dev. 10 91–97.

    Article  Google Scholar 

  49. Mougneau, E., Lemieux, L., Rassoulzadegan, M., and Cuzin, F. (1984) Biological activities of v-myc and rearranged c-myc oncogenes in rat fibroblast cell sin culture. Proc. Natl.Acad. Sci. USA, 81 5758–5762.

    Article  PubMed  CAS  Google Scholar 

  50. Sorrentino, V., Drozdoff, V., McKinney, M.D., Zeitz, L., and Fleissner, E. (1986) Potentiation of growth factor activity by exogenous c-myc expression. Proc. Natl.Acad. Sci. USA, 83 8167–8171.

    Article  PubMed  CAS  Google Scholar 

  51. Karn, J., Watson, J.V., Lowe, A.D., Green, S.M., and Vedeckis, W. (1989) Regulation of cell cycle duration by c-myc levels. Oncogene, 4 773–787.

    PubMed  CAS  Google Scholar 

  52. Land, H., Parada, L.F., and Weinberg, R.A. (1983) Tumourigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature, 304 596–602.

    Article  PubMed  CAS  Google Scholar 

  53. Facchini, L.M., and Penn, L.Z. (1998) The molecular role of Myc in growth and transformation: recent discoveries lead to new insights. FASEB J., 12 633–651.

    PubMed  CAS  Google Scholar 

  54. Cerni, C. (2000) Telomeres, telomerase, and myc.An update. Mutat.Res., 462, 31–47

    Article  PubMed  CAS  Google Scholar 

  55. Claasen G.F., and Hann, S.R. (1999) Myc mediated transformation: the repression connection. Oncogene, 18 2925–2933.

    Article  CAS  Google Scholar 

  56. Pelengaris, S., Littlewood, T., Khan, M., Elia, G., and Evan, G. (1999) Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell, 3 565–577.

    Article  PubMed  CAS  Google Scholar 

  57. Pelengaris, S., Rudolph, B., and Littlewood, T. (2000) Action of Myc in vivo-proliferation and apoptosis. Curr. Opin. Genet. Dev., 10 100–105.

    Article  PubMed  CAS  Google Scholar 

  58. Fotsis, T., Breit, S., Lutz, W., Rossler, J., Hatzi, E., Schwab, M., and Schweigerer, L. (1999) Down-regulation of endothelial cell growth inhibitors by enhanced MYCN oncogene expression in human neuroblastomas cells. Eur. J. Biochem. 263 757–764.

    Article  PubMed  CAS  Google Scholar 

  59. Ngo, C.V., Gee, M., Akhtar, N., Yu, D., Volpert, O., Auerbach, R., and Thomas-Tikhonenko, A. (2000) An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype. Cell Growth Differ., 11 201–210.

    PubMed  CAS  Google Scholar 

  60. Janz, A., Sevignani, C., Kenyon, K., Ngo, C.V., and Thomas-Tikhonenko, A. (2000) Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res., 28 2268–2275

    Article  PubMed  CAS  Google Scholar 

  61. Semenza, G.L. (2002) Involvement of hypoxia-inducible factor 1 in human cancer. Intern. Med., 41 79–83.

    PubMed  CAS  Google Scholar 

  62. Lengauer, C., Kinzler, K.W., and Vogelstein, B. (1998) Genetic instabilities in human cancers. Nature, 396 643–649.

    Article  PubMed  CAS  Google Scholar 

  63. Mai, S., Hanley-Hyde, J., and Fluri, M. (1996) C-Myc over-expression associated DHFR gene amplification in hamster, rat, mouse and human cell lines. Oncogene, 12 277–288.

    PubMed  CAS  Google Scholar 

  64. Felsher, D.W., and Bishop, J.M. (1999B) Transient excess of MYC activity can elicit genomic instability and tumourigenesis. Proc. Natl. Acad. Sci., USA, 96 3940–3944.

    Article  CAS  Google Scholar 

  65. Kuschak, T.I., McMillan-Ward, E., Taylor, C., Israels, S., and Henderson, D.W. (1999) The ribonucleotide reductase r2 gene is a non-transcribed target of c-myc-induced genomic instability. Gene, 238 351–365.

    Article  PubMed  CAS  Google Scholar 

  66. Mushinski, J.F., Hanley-Hyde, J., Rainey, G.J., Kuschak, T.I., and Taylor, C. (1999) Myc-induced cyclin d2 genomic instability in murine B cell neoplasms. Curr. Top. Microbiol. Immunol., 246 183–189.

    PubMed  CAS  Google Scholar 

  67. Li, Q., and Dang, C.V. (1999) C-Myc over-expression uncouples DNA replication from mitosis. Mol. Cell. Biol., 19 5339–5351.

    PubMed  CAS  Google Scholar 

  68. Paulovich, A.G., Toczyski, D.P., and Hartwell, L.H. (1997) When checkpoints fail. Cell, 88 315–321.

    Article  PubMed  CAS  Google Scholar 

  69. Iguchi-Ariga, S.M.M., Itani, T., Kiji, Y., and Ariga, H. (1987) Possible function of the c-myc product: promotion of cellular DNA replication. EMBO J. 6 2365–2371.

    PubMed  CAS  Google Scholar 

  70. Packham, G., and Cleveland, J.L. (1995) C-Myc and apoptosis. Biochim. Biophys. Acta, 1242 11–28.

    PubMed  Google Scholar 

  71. Grandori, C., and Eisenman, R.N. (1997) Myc target genes. Trends Biochem., 22 177–181.

    Article  CAS  Google Scholar 

  72. Al-Rubeai, M. (1998) Apoptosis and cell culture technology. Adv. Biochem.Eng./Biotech., 59 226–249.

    Google Scholar 

  73. Birch, J.R., and Froud, S.J. (1994) Mammalian cell culture systems for recombinant protein production. Biologicals, 22 127–133.

    Article  PubMed  CAS  Google Scholar 

  74. Ifandi, V., and Al-Rubeai, M. (2006) Regulation of cell proliferation and apoptosis in CHO-K1 cells by the coexpression of c-Myc and Bcl-2. Biotechnol Prog, 21 6671–677.

    Google Scholar 

  75. Darnbrough, C., Watts, P., and MacDonald, C. (1992) Cloning of mouse hybridoma cells infected with myc and ras containing retroviruses yields cell lines with improved growth and antibody production. In Spier, R.E., Griffiths, J.B., and Macdonald, C., (eds). Animal Cell Technology: Developments, Processes and Products. Butterworth-Heinemann, Ltd, Oxford, pp. 20–22.

    Google Scholar 

  76. Singh, R.P., Al-Rubeai, M., and Emery, A.N. (1996) Apoptosis: exploiting novel pathways to the improvement of cell culture processes. Genet. Eng, Biotech, 16 227–251.

    CAS  Google Scholar 

  77. Lubiniecki, A.S. (1998) Historical reflections on the cell culture engineering. Cytotechnology, 28 139–145.

    Article  Google Scholar 

  78. Pak, S.C.O., Hunt, S.M.N., Bridges, M.W., Sleigh, M.J., and Gray, P.P. (1996) Super-CHO: a cell line capable of autocrine growth under fully defined protein-free conditions. Cytotechnology, 22 139–146.

    Article  CAS  Google Scholar 

  79. Rasmussen, B., Davis, R., Thomas J., and Reddy, P. (1998) Isolation, characterization and recombinant protein expression in veggie-CHO: a serum-free CHO host cell line. Cytotechnology, 28 31–42.

    Article  CAS  Google Scholar 

  80. Fussenegger, M., and Bailey, J.E. (1998) Molecular regulation of cell cycle progression and apoptosis in mammalian cells: implications for biotechnology. Biotech. Prog., 14 807–833.

    Article  CAS  Google Scholar 

  81. Fussenegger, M., and Bailey, J.E. (1999) Control of mammalian cell proliferation as an important strategy in cell culture technology, cancer therapy and tissue engineering. In: Cell Engineering, vol. 1. Ed: M. Al-Rubeai, Kluwer Academic Publishers.

    Google Scholar 

  82. Fussenegger, M., Bailey, J.E., Hauser, H., and Mueller, P. (1999) Genetic optimization of recombinant glycoprotein production by mammalian cells. TIBTECH, 17:35–43.

    CAS  Google Scholar 

  83. Bi Jing-Xiu, Shuttleworth J., Al-Rubeai M. (2004) Uncoupling of cell growth and proliferation results in enhancement of productivity in p21-arrested CHO cells. Biotechn. Bioeng., 85 741–749.

    Article  CAS  Google Scholar 

  84. Crea F., Sarti D., Falciani F., Al-Rubeai M. (2006) Over-expression of hTERT in CHO K1 results in decreased apoptosis and reduced serum dependency. J. Biotechn., 121 109–123.

    Article  CAS  Google Scholar 

  85. Ifandi, V., and Al-Rubeai, M. (2003) Stable transfection of CHO cells with the c-myc gene results in increased proliferation rates, reduces serum dependency, and induces anchorage independence. Cytotechnology, 41 1–10.

    Article  CAS  Google Scholar 

  86. Evan, G.I., Wyllie, A.H., Gilbert, C.S., Littlewood, T.D., Land, H., Brooks, M., Waters, C.M., Penn, L.Z., and Hancock, D.C. (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell, 69 119–128.

    Article  PubMed  CAS  Google Scholar 

  87. Sunstrom, N.-A. S., Gay, R.D., Wong, D.C., Kitchen, N.A., DeBoer, L., and Gray, P.P. (2000) Insulin like growth factor I and transferring mediate growth and survival of Chinese hamster ovary cells. Biotech. Progr., 16 698–702.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ifandi, V., Al-Rubeai, M. (2007). Engineering of Cell Proliferation Via Myc Modulation. In: Al-Rubeai, M., Fussenegger, M. (eds) Systems Biology. Cell Engineering, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5252-9_5

Download citation

Publish with us

Policies and ethics