Advertisement

Evolutionary Paleoecology of Ediacaran Benthic Marine Animals

  • David J. Bottjer
  • Matthew E. Clapham
Part of the Topics in Geobiology book series (TGBI, volume 27)

Keywords

Trace Fossil Doushantuo Formation Wrinkle Structure Olenek Uplift Tier Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allmon, W. D., and Bottjer, D. J., 2001, Evolutionary Paleoecology, Columbia University Press, New York.Google Scholar
  2. Arnold, G. L., Anbar, A. D., Barling, J., and Lyons, T. W., 2004, Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans, Science 304: 87–90.CrossRefGoogle Scholar
  3. Ausich, W. I., and Bottjer, D. J., 2001, Sessile Invertebrates, in: Palaeobiology II (D. E. G. Briggs and P. R. Crowther, eds.), Blackwell Scientific, Oxford, pp. 384–386.Google Scholar
  4. Awramik, S. M., 1971, Precambrian columnar stromatolite diversity: reflection of metazoan appearance, Science 174: 825–827.CrossRefGoogle Scholar
  5. Barfod, G. H., Albarède, F., Knoll, A. H., Xiao, S., Télouk, P., Frei, R., and Baker, J., 2002, New Lu–Hf and Pb–Pb age constraints on the earliest animal fossils, Earth Planet. Sci. Lett. 201: 203–212.CrossRefGoogle Scholar
  6. Bengtson, S., and Budd, G. E., 2004, Comment on "Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian", Science 306: 1291.CrossRefGoogle Scholar
  7. Bottjer, D. J., 2002, Enigmatic Ediacara fossils: Ancestors or aliens? in: Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life (D. J. Bottjer, W. Etter, J. W. Hagadorn, and C. Tang, eds), Columbia University Press, New York, pp. 11–33.Google Scholar
  8. Bottjer, D. J., 2005, The early evolution of animals, Sci. Am. 293: 42–47.CrossRefGoogle Scholar
  9. Bottjer, D. J., and Ausich, W. I., 1986, Phanerozoic development of tiering in soft substrata suspension-feeding communities, Paleobiology 12: 400–420.Google Scholar
  10. Bottjer, D. J., Etter, W., Hagadorn, J. W., and Tang, C. M., 2002, Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life, Columbia University Press, New York.Google Scholar
  11. Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q., 2000, The Cambrian substrate revolution, GSA Today 10(9): 1–7.Google Scholar
  12. Bowring, S. A., Myrow, P. M., Landing, E., Ramezani, J., and Grotzinger, J. P., 2003, Geochronological constraints on terminal Neoproterozoic events and the rise of metazoans, Geophys. Res. Abstr. 5: 13219.Google Scholar
  13. Boynton, H., and Ford, T. D., 1995, Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England, Mercian Geol. 13: 165–182.Google Scholar
  14. Brenchley, P. J., and Harper, D. A. T., 1998, Palaeoecology: Ecosystems, Environments and Evolution, Chapman & Hall, London.Google Scholar
  15. Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E., 1999, Archean molecular fossils and the early rise of Eukaryotes, Science 285: 1033–1036.CrossRefGoogle Scholar
  16. Canfield, D. E., 1998, A new model for Proterozoic ocean chemistry, Nature 396: 450–453.CrossRefGoogle Scholar
  17. Chen, J.-Y., Bottjer, D. J., Oliveri, P., Dornbos, S. Q., Gao, F., Ruffins, S., Chi, H., Li, C.-W., and Davidson, E. H., 2004, Small bilaterian fossils from 40 to 55 million years before the Cambrian, Science 305: 218–222.CrossRefGoogle Scholar
  18. Chen, J.-Y., Oliveri, P., Gao, F., Dornbos, S. Q., Li, C.-W., Bottjer, D. J., and Davidson, E. H., 2002, Precambrian animal life: Probable developmental and adult cnidarian forms from southwest China, Developmental Biol. 248: 182–196.CrossRefGoogle Scholar
  19. Clapham, M. E., and Narbonne, G. M., 2002, Ediacaran epifaunal tiering, Geology 30: 627–630.CrossRefGoogle Scholar
  20. Clapham, M. E., Narbonne, G. M., and Gehling, J. G., 2003, Paleoecology of the oldest-known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland, Paleobiology 29: 527–544.CrossRefGoogle Scholar
  21. Clapham, M. E., Narbonne, G. M., Gehling, J. G., Greentree, C., and Anderson, M. M., 2004, Thectardis avalonensis: a new Ediacaran fossil from the Mistaken Point biota, Newfoundland, J. Paleontol. 78: 1031–1036.CrossRefGoogle Scholar
  22. Condon, D. J., Zhu, M.-Y., Bowring, S. A., Wang, W., Yang, A., and Jin, Y., 2005, U–Pb ages from the Neoproterozoic Doushantuo Formation, China, Science 308: 95–98.CrossRefGoogle Scholar
  23. Dalrymple, R. W., and Narbonne, G. M., 1996, Continental slope sedimentation in the Sheepbed Formation (Neoproterozoic, Windermere Supergroup), Mackenzie Mountains, N.W.T., Can. J. Earth Sci. 33: 848–862.CrossRefGoogle Scholar
  24. Dornbos, S. Q., Bottjer, D. J., and Chen, J.-Y., 2004, Evidence for seafloor microbial mats and associated metazoan lifestyles in Lower Cambrian phosphorites of southwest China, Lethaia 37: 127–137.Google Scholar
  25. Dornbos, S. Q., Bottjer, D. J., Chen, J.-Y., Gao, F., Oliveri, P., and Li, C.-W., 2006, Environmental controls on the taphonomy of phosphatized animals and animal embryos from the Neoproterozoic Doushantuo Formation, southwest China, Palaios 21: 3–14.CrossRefGoogle Scholar
  26. Dornbos, S. Q., Bottjer, D. J., Chen, J.-Y., Oliveri, P., Gao, F., and Li, C.-W., 2005, Precambrian animal life: taphonomy of phosphatized metazoan embryos from southwest China, Lethaia 38: 101–109.CrossRefGoogle Scholar
  27. Droser, M. L., Gehling, J. G., and Jensen, S., 2005, Ediacaran trace fossils: true or false? in: Evolving Form and Function: Fossils and Development (D. E. G. Briggs, ed.), Peabody Museum of Natural History, New Haven, CT, pp. 125–138.Google Scholar
  28. Droser, M. L., Gehling, J. G., and Jensen, S. R., 2006, Assemblage palaeoecology of the Ediacara biota: the unabridged edition? Palaeogeogr. Palaeoclimatol. Palaeoecol. 232: 131–147.CrossRefGoogle Scholar
  29. Fedonkin, M. A., 2003, The origin of the Metazoa in the light of the Proterozoic fossil record, Paleontol. Res. 7: 9–41.CrossRefGoogle Scholar
  30. Fedonkin, M. A., and Waggoner, B. M., 1997, The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism, Nature 388: 868–871.CrossRefGoogle Scholar
  31. Gehling, J. G., 1999, Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks, Palaios 14: 40–57.CrossRefGoogle Scholar
  32. Gehling, J. G., 2000, Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia, Precambrian Res. 100: 65–95.CrossRefGoogle Scholar
  33. Gehling, J. G., Droser, M. L., Jensen, S. R., and Runnegar, B. N., 2005, Ediacara organisms: relating form to function, in: Evolving Form and Function: Fossils and Development (D. E. G. Briggs, ed.), Peabody Museum of Natural History, New Haven, CT, pp. 43–66.Google Scholar
  34. Glaessner, M. F., and Wade, M., 1966, The late Precambrian fossils from Ediacara, South Australia, Palaeontology 9: 599–628.Google Scholar
  35. Grazhdankin, D. V., 2004, Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution, Paleobiology 30: 203–221.CrossRefGoogle Scholar
  36. Grazhdankin, D. V., and Ivantsov, A. Y., 1996, Reconstructions of biotopes of ancient Metazoan of the Late Vendian White Sea biota, Palaeontol. J. 30: 674–678.Google Scholar
  37. Grazhdankin, D. V., and Seilacher, A., 2002, Underground Vendobionta from Namibia, Palaeontology 45: 57–78.CrossRefGoogle Scholar
  38. Grotzinger, J. P., and Knoll, A. H., 1999, Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks, Annu. Rev. Earth Planet. Sci. 27: 313–358.CrossRefGoogle Scholar
  39. Grotzinger, J. P., Watters, W. A., and Knoll, A. H., 2000, Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia, Paleobiology 26: 334–359.CrossRefGoogle Scholar
  40. Hagadorn, J. W., and Bottjer, D. J., 1997, Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic–Phanerozoic transition, Geology 25: 1047–1050.CrossRefGoogle Scholar
  41. Hagadorn, J. W., and Bottjer, D. J., 1999, Restriction of a late Neoproterozoic biotope: Suspect-microbial structures and trace fossils at the Vendian–Cambrian transition, Palaios 14: 73–85.CrossRefGoogle Scholar
  42. Hoffman, P. F., and Schrag, D. P., 2002, The snowball Earth hypothesis: Testing the limits of global change, Terra Nova 14: 129–155.CrossRefGoogle Scholar
  43. Knoll, A. H., 2003, The geological consequences of evolution, Geobiology 1: 3–14.CrossRefGoogle Scholar
  44. Knoll, A. H., Grotzinger, J. P., Kaufman, A. J., and Kolosov, P., 1995, Integrated approaches to terminal Neoproterozoic stratigraphy: An example from the Olenek Uplift, northeastern Siberia, Precambrian Res. 73: 251–270.CrossRefGoogle Scholar
  45. Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N., 2004, A new period for the geological time scale, Science 305: 621–622.CrossRefGoogle Scholar
  46. Laflamme, M., Narbonne, G. M., and Anderson, M. M., 2004, Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland, J. Paleontol. 78: 827–837.CrossRefGoogle Scholar
  47. Li, C.-W., Chen, J.-Y., and Hua, T.-E., 1998, Precambrian sponges with cellular structures, Science 279: 879–882.CrossRefGoogle Scholar
  48. Lipps, J. H., and Valentine, J. W., 2004, Late Neoproterozoic metazoa: weird, wonderful, and ghostly, in: Neoproterozoic–Cambrian Biological Revolutions (J. H. Lipps and B. M. Waggoner, eds.), Paleontological Society Papers 10, New Haven, pp. 51–66.Google Scholar
  49. Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L., 2000, Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: implications for metazoan evolution, Science 288: 841–845.CrossRefGoogle Scholar
  50. McCaffrey, M. A., Moldowan, J. M., Lipton, P. A., Summons, R. E., Peters, K. E., Jeganathan, A., and Watt, D. S., 1994, Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen, Geochim. Cosmochim. Acta 58: 529–532.CrossRefGoogle Scholar
  51. McMenamin, M. A. S., 1986, The Garden of Ediacara, Palaios 1: 178–182.CrossRefGoogle Scholar
  52. Narbonne, G. M., 2004, Modular construction of early Ediacaran complex life forms, Science 305: 1141–1144.CrossRefGoogle Scholar
  53. Narbonne, G. M., 2005, The Ediacara biota: Neoproterozoic origin of animals and their ecosystems, Annu. Rev. Earth Planet. Sci. 33: 421–442.CrossRefGoogle Scholar
  54. Narbonne, G. M., and Gehling, J. G., 2003, Life after Snowball: The oldest complex Ediacaran fossils, Geology 31: 27–30.CrossRefGoogle Scholar
  55. Narbonne, G. M., Saylor, B. Z., and Grotzinger, J. P., 1997, The youngest Ediacaran fossils from southern Africa, J. Paleontol. 71: 953–967.Google Scholar
  56. Olcott, A., Corsetti, F. A., and Awramik, S. M., 2002, A new look at stromatolite form diversity, GSA Abstr. with Progr. 34: 271.Google Scholar
  57. Olcott, A. N., Sessions, A. L., Corsetti, F. A., Kaufman, A. J., and Flavio de Oliviera, T., 2005, Biomarker evidence for photosynthesis during Neoproterozoic glaciation, Science 310: 471–474.CrossRefGoogle Scholar
  58. Peterson, K. J., and Butterfield, N. J., 2005, Origin of the eumetazoa: testing ecological predications of molecular clocks against the Proterozoic fossil record, Proc. Nat. Acad. Sci. USA 102: 9547–9552.CrossRefGoogle Scholar
  59. Peterson, K. J., Lyons, J. B., Nowak, K. S., Takacs, C. M., Wargo, M. J., and McPeek, M. A., 2004, Estimating metazoan divergence times with a molecular clock, Proc. Nat. Acad. Sci. USA 101: 6536–6541.CrossRefGoogle Scholar
  60. Peterson, K. J., Waggoner, B. M., and Hagadorn, J. W., 2003, A fungal analog for Newfoundland Ediacaran fossils? Integr. Comp. Biol. 43: 127–136.CrossRefGoogle Scholar
  61. Runnegar, B., 2000, Loophole for snowball Earth, Nature 405: 403–404.CrossRefGoogle Scholar
  62. Saylor, B. Z., Grotzinger, J. P., and Germs, G. J. B., 1995, Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand subgroups (Nama Group), southwestern Namibia, Precambrian Res. 73: 153–171.CrossRefGoogle Scholar
  63. Seilacher, A., 1999, Biomat-related lifestyles in the Precambrian, Palaios 14: 86–93.CrossRefGoogle Scholar
  64. Seilacher, A., Grazhdankin, D. V., and Legouta, A., 2003, Ediacaran biota: The dawn of animal life in the shadow of giant protists, Paleontol. Res. 7: 43–54.CrossRefGoogle Scholar
  65. Selden, P., and Nudds, J., 2004, Evolution of Fossil Ecosystems, University of Chicago Press, Chicago.Google Scholar
  66. Shields, G. A., Stille, P., Brasier, M. D., and Atudorei, N.-V., 1997, Stratified oceans and oxygenation of the late Precambrian environment: A post glacial geochemical record from the Neoproterozoic of W. Mongolia, Terra Nova 9: 218–222.CrossRefGoogle Scholar
  67. Taylor, W. L., and Brett, C. E., 1996, Taphonomy and paleoecology of Echinoderm Lagerstätten from the Silurian (Wenlockian) Rochester Shale, Palaios 11: 118–140.CrossRefGoogle Scholar
  68. Waggoner, B. M., 1998, Interpreting the earliest Metazoan fossils: What can we learn? Am. Zool. 38: 975–982.Google Scholar
  69. Waggoner, B. M., 1999, Biogeographic analyses of the Ediacara biota: a conflict with paleotectonic reconstructions, Paleobiology 24: 440–458.Google Scholar
  70. Watkins, R., 1991, Guild structure and tiering in a high-diversity Silurian community, Milwaukee County, Wisconsin, Palaios 6: 465–478.CrossRefGoogle Scholar
  71. Wood, D. A., Dalrymple, R. W., Narbonne, G. M., Gehling, J. G., and Clapham, M. E., 2003, Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland, Can. J. Earth Sci. 40: 1375–1391.CrossRefGoogle Scholar
  72. Xiao, S., and Knoll, A. H., 2000, Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guizhou, South China, J. Paleontol. 74: 767–788.CrossRefGoogle Scholar
  73. Xiao, S., Shen, B., Zhou, C., Xie, G.-W., and Yuan, X., 2005, A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan, Proc. Nat. Acad. Sci. USA 102: 10227–10232.CrossRefGoogle Scholar
  74. Xiao, S., Yuan, X., and Knoll, A. H., 2000, Eumetazoan fossils in terminal Proterozoic phosphorites? Proc. Nat. Acad. Sci. USA 97: 13684–13689.CrossRefGoogle Scholar
  75. Xiao, S., Zhang, Y., and Knoll, A. H., 1998, Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature 391: 553–558.CrossRefGoogle Scholar
  76. Yuan, X., Xiao, S., Parsley, R. L., Zhou, C., Chen, Z., and Hu, J., 2002, Towering sponges in an Early Cambrian Lagerstätte: Disparity between nonbilaterian and bilaterial epifaunal tierers at the Neoproterozoic-Cambrian transition, Geology 30: 363–366.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • David J. Bottjer
    • 1
  • Matthew E. Clapham
    • 1
  1. 1.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations