Skip to main content

Salicylic Acid: Biosynthesis, Metabolism and Physiological Role in Plants

  • Chapter
Salicylic Acid: A Plant Hormone

Abstract

Salicylic acid (SA) is a phenolic derivative, distributed in a wide range of plant species. It is a natural product of phenylpropanoid metabolism. Decarboxylation of transcinnamic acid to benzoic acid and its subsequent 2-hydroxylation results to SA. It undergoes metabolism by conjugating with glucose to SA glucoside and an ester. SA has direct involvement in plant growth, thermogenesis, flower induction and uptake of ions. It affects ethylene biosynthesis, stomatal movement and also reverses the effects of ABA on leaf abscission. Enhancement of the level of chlorophyll and carotenoid pigments, photosynthetic rate and modifying the activity of some of the important enzymes are other roles assigned to SA. This chapter gives a comprehensive coverage to all the above aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alibert, G., and Ranjeva, R., 1971. Recharches sur les enzymes catalysant la biosynthese des acides phenoliques chez Quarcus pedunculata(Ehrn): I – Formation des series cinnamique et benzoique. FEBS Lett., 19: 11-14.

    Article  PubMed  CAS  Google Scholar 

  • Alibert, G., and Ranjeva, R., 1972. Recharches sur les enzymes catalysant la biosyntheses des acid phenoliques chez Quarcus pedunculata (Ehrn): II- Localization intercellulaire de la phenylalanin mmonique-lyase, de la cinnamate 4-hydroxylase, et de la “benzoate synthase” Biochem. Biophys. Acta, 279: 282-289.

    PubMed  CAS  Google Scholar 

  • Anandhi, S., and Ramanujam, M. P., 1997. Effect of salicylic acid on black gram (Vigna mungo) cultivars. Ind. J. Plant Physiol. 2: 138-141.

    CAS  Google Scholar 

  • Apte, P. V., and Laloraya, M. M., 1982. Inhibitory action of phenolic compounds on abscisic acid induced abscission. J. Exp. Bot., 33: 826-830.

    Article  CAS  Google Scholar 

  • Arberg, B., 1981. Plant growth regulators. Monosubstituted benzoic acid. Swed. Agric. Res., 11: 93-105.

    Google Scholar 

  • Balke, N. E., and Schulz, M., 1987. Potential impact of enzymatic glucosidation of allelopathic phenolic compounds. In : Invited Lectures, Sec. 4: Industrial chemistry, 31st Int. Cong. Pure Appl. Chem. Pp. 17-29, Sophia, Bulgaria : Bulg. Acad. Sci.

    Google Scholar 

  • Billek, G., and Schmook, F. P., 1967. Zur biosynthese der gentisinaure. Monatsch Chem., 98: 1651-1664.

    Article  CAS  Google Scholar 

  • Chadha, K. C., and Brown, S. A., 1974. Biosynthesis of phenolic acids in tomato plants infected with Agrobacterium tumefaciens. Can. J. Bot., 52: 2041-2046.

    CAS  Google Scholar 

  • Christianson, M. L., and Duffy, S. H., 2002. Dose-dependent effect of salicylates in a moss, Funaria hygrometrica. J. Plant Growth Regul., 21: 200-208.

    Article  CAS  Google Scholar 

  • Cleland, C. F., and Ajami, A., 1974. Identification of a flower-inducing factor, isolated aphid honeydew as being salicylic acid. Plant Physiol., 54: 904-906.

    PubMed  CAS  Google Scholar 

  • Cleland, C. F., and Tanaka, O., 1979. Effect of day length on the ability of salicylic acid to induce flowering in the long-day Lema gibba G3 and the short-day plant Lemma paucicostata 6746. Plant Physiol., 64: 421-424.

    PubMed  CAS  Google Scholar 

  • Eberhard, S., Doubrava, N., Marta, V., Mohnen, D., Southwick, A. et al. 1989, Pectic cell wall fragments regulate tobacco thin cell layer explant morphogenesis. Plant Cell, 1: 747-755.

    Article  PubMed  CAS  Google Scholar 

  • El-Basyouni, S., Chen, D., Ibrahim, R., Neish, A.C., and Towers, G. H. N., 1964. The biosynthesis of hydroxybenzoic acids in higher plants. Phytochem. 3: 485-492.

    Article  CAS  Google Scholar 

  • Ellis, B. E., and Amichein, N., 1971. The “NH-shift” during aromatic orthohydroxylation in higher plants. Phytochem., 10: 3069-3072.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Hayat, S., and Ahmad, A., 2003. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica, 41: 281-284.

    Article  CAS  Google Scholar 

  • Fujioka, S., Yamaguchi, I., Murofushi, N., Takahashi, N., Kaihara, S., and Takimoto, A., 1983. The role of plant hormones and benzoic acid in flowering of Lamma paucicostata 151 and 381. Plant Cell Physiol., 24: 241-246.

    CAS  Google Scholar 

  • Gabriace, B., Werck-Reichhart, D., Teutsch, H., and Durst, F., 1991. Purification and immunocharacterization of a plant cytochrome P450: the cinnamic acid 4-hydroxylase. Arch. Biochem. Biophys., 288: 302-309.

    Article  Google Scholar 

  • Gestetner, B., and Conn, E. E., 1974. The 2-hydroxylation of transcimannic acid by chloroplasts from Melilotus alba Desr. Arch. Biochem. Biophys. 163: 617-624.

    Article  PubMed  CAS  Google Scholar 

  • Ghai, N., Setia, R.C., and Setia, N., 2002. Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1). Phytomorphol., 52: 83-87.

    Google Scholar 

  • Glass, A. D., 1973. Influence of phenolic acids on ion uptake. I. Inhibition of phosphate uptake. Plant Physiol., 51: 1037-1041.

    PubMed  CAS  Google Scholar 

  • Glass, A. D., 1974. Influence of phenolic acids upon ion uptake. III. Inhibition of potassium absorption. J. Exp. Bot., 25: 1104-1113.

    Article  CAS  Google Scholar 

  • Gordon, L. K., Minibayeva, F. V., Ogerodnikova, T. I., Rakhmatullina, D. F., Tzentzevitzky, A. N., Maksyntin, D. A., and Valitova, J. N., 2002. Salicylic acid induced dissipation of the proton gradient on the plant cell membrane. Doklady Biol. Sci., 387: 581-583.

    Article  CAS  Google Scholar 

  • Goto, N., 1981. Enhancement of gibberellic acid by 5-bromodeoxyuridine, salicylic acid and benzoic acid on the flowering of Arabidopsis thaliana. Arabidopsis Inf. Serv., 18: 157-160.

    Google Scholar 

  • Griffiths, L. A., 1959. On the distribution of gentisic acid in green plant. J. Exp. Bot., 10: 437-442.

    Article  CAS  Google Scholar 

  • Harper, J. P., and Balke, N. E., 1981. Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiol., 68: 1349-1353.

    PubMed  CAS  Google Scholar 

  • Hayat, S., Fariduddin, Q., Ali, B., and Ahmad, A.,2005. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron. Hung., 53: 433-437.

    Article  CAS  Google Scholar 

  • Ibrahim, R. K., and Towers, G. H. N., 1959. Conversion of salicyclic acid to gentisic acid and o-pyrocatechuic acid, all labeled with carbon-14, in plants. Nature, 184: 1803.

    Article  CAS  Google Scholar 

  • Jain, A., and Srivastava, H. S., 1981. Effect of salicylic acid on nitrate reductase activity in maize seedlings. Physiol. Plant., 51: 339-342.

    Article  CAS  Google Scholar 

  • Khan, W., Prithviraj, B., and Smith, D. L., 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol. 160: 485-492.

    Article  PubMed  CAS  Google Scholar 

  • Khodary, S. F. A., 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int. J. Agric. Biol., 6: 5-8.

    CAS  Google Scholar 

  • Khurana, J. P., and Maheshwari, S. C., 1980. Some effects of salicylic acid on growth and flowering in Spirodela polyrrhiza SP20. Plant Cell Physiol., 21: 923-927.

    CAS  Google Scholar 

  • Khurana, J. P., and Maheshwari, S. C., 1987. Floral induction in Wolffia microscopica by non-inductive long days. Plant Cell Physiol., 24: 907-912.

    Google Scholar 

  • Klambt, H. D., 1962. Conversion in plants of benzoic acid to salicylic acid and its β-glucoside. Nature, 196: 491.

    Article  Google Scholar 

  • Kumar, P., Dube, S. D., and Chauhan, V.S., 1999. Effect of salicylic acid on growth, development and some biochemical aspects of soybean (Glycine max L. Merrill). Ind. J. Plant Physiol., 4: 327-330.

    CAS  Google Scholar 

  • Kumar, P., Lakshmi, N.J., and Mani, V. P., 2000. Interactive effects of salicylic acid and phytohormones on photosynthesis and grain yield of soybean (Glycine max L. Merrill). Physiol. Mol. Biol. Plants. 6: 179-186.

    Google Scholar 

  • Larqué-Saavedra, A., 1978. The anti-transpirant effect of acetylsalicylic acid on Phaseolus vulgaris L., Physiol. Plant., 43: 126-128.

    Article  Google Scholar 

  • Larqué-Saavedra, A., 1979. Stomatal closure in response to acetylsalicylic acid treatment. Z. Pflanzenphysiol., 93 (4): 371-375.

    Google Scholar 

  • Lee, T. T., and Skoog, F., 1965. Effect of substituted phenols on bud formation and growth of tobacco tissue culture. Physiol. Plant., 18: 386-402.

    Article  CAS  Google Scholar 

  • Leslie, C. A., and Romani, R. J., 1988. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol., 88: 833-837

    PubMed  CAS  Google Scholar 

  • Macri, F., Kanello, A., and Pennazio, S., 1986. Salicylate-collapsed membrane potential in pea stem mitochondria. Physiol. Plant., 67: 136-140.

    Article  CAS  Google Scholar 

  • Mitchell, A. G., and Broadhead, J. F., 1967. Hydrolysis of solubilized aspirine. J. Pharm. Sci., 56: 1261-1266.

    Article  PubMed  CAS  Google Scholar 

  • Moharekar, S. T., Lokhande, S. D., Hara, T., Tanaka, R., Tanaka, A., and Chavan, P.D.,2003. Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings. Photosynthetica, 41: 315-317.

    Article  CAS  Google Scholar 

  • Nanda, K. K., Kumar, S., and Sood, V., 1976. Effect of gibberellic acid and some phenols on flowering of Impatiens balsamina, a qualitative short-day plant. Physiol. Plant., 38: 53-56.

    Article  CAS  Google Scholar 

  • Oota, Y., 1972. The response of Lemma gibba G3 to a single long day in the presence of EDTA. Plant Cell Physiol., 13: 575-580.

    CAS  Google Scholar 

  • Oota, Y., 1975. Short-day flowering of Lamma gibba G3 induced by salicylic acid. Plant Cell Physiol., 16: 1131-1135.

    CAS  Google Scholar 

  • Pancheva, T. V., and Popova, L. P., 1998. Effect of salicylic acid on the synthesis of ribulose-1,5,-biphosphate carboxylase/oxygenase in barley leaves. J. Plant Physiol., 152: 381-386.

    CAS  Google Scholar 

  • Pancheva, T. V., Popova, L. P., and Uzunova, A. M., 1996. Effect of salicylic acid on growth and photosynthesis in barley plants. J. Plant Physiol., 149: 57-63.

    CAS  Google Scholar 

  • Piterse, A. H., 1982. A review of chemically induced flowering in Lemma gibba G3 and Pistia stratiotes. Aquat. Bot., 13: 21-28.

    Article  Google Scholar 

  • Piterse, A.H., and Muller, L. J., 1977. Induction of flowering in Lemma gibba G3 under short day conditions. Plant Cell Physiol., 18: 45-53.

    Google Scholar 

  • Popova, L., Pancheva, T., and Uzunova, A., 1997. Salicylic acid : Properties, biosynthesis and physiological role. Bulg. J. Plant Physiol., 23: 85-93.

    CAS  Google Scholar 

  • Rane, J., Lakkineni, K. C., Kumar, P. A., and Abrol, Y. P., 1995. Salicylic acid protects nitrate reductase activity of wheat leaves. Plant Physiol. Biochem., 22: 119-121.

    Google Scholar 

  • Raskin, I., 1992a. Role of salicylic acid in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 43: 439-463.

    Article  CAS  Google Scholar 

  • Raskin, I., 1992b. Salicylate, a new plant hormone. Plant Physiol., 99: 799-803.

    CAS  Google Scholar 

  • Raskin, I., Skubatz, H., Tang, W., and Meeuse, B. J. D., 1990. Salicylic acid levels in thermogenic and nonthermogenic plants. Ann. Bot., 66: 376-383.

    Google Scholar 

  • Raskin, I., Turner, I. M., and Melander, W. R., 1989. Regulation of heat production in the infloresences of an Arum lily by endogenous salicylic acid. Proc. Natl. Acad. Sci. USA, 86: 2214-2218.

    Article  PubMed  CAS  Google Scholar 

  • Romani, R. J., Hess, V. M., and Leslie, C. A., 1989. Salicylic acid inhibition of ethylene production by apple discs and other plant tissues. J. Plant Growth Regul., 8: 62-69.

    Article  Google Scholar 

  • Russell, D. W., and Conn, E. E., 1967. The cinnamic acid 4-hydroxylase of pea seedlings. Arch. Biochem. Biophys., 122: 256-258.

    Article  PubMed  CAS  Google Scholar 

  • Scharfettez, E., Rottenburg, T., and Kandeler, R., 1978. The effect of EDDHA and salicylic acid on flowering and vegetative development in Spirodela punctata. Z. Pflanzenphysiol. 87: 445-454.

    Google Scholar 

  • Seth, P. N., Venkatarman, R., and Maheshwari, S. C., 1970. Studies on growth and flowering of a short-day plant, Wolffia microscopica III. Role of metal ions and chelates. Planta, 90: 349-359.

    Article  CAS  Google Scholar 

  • Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Metraux, J. P., and Raskin, I., 1995. Salicylic acid in rice, biosynthesis, conjugation and possible role. Plant Physiol., 108: 633-639.

    PubMed  CAS  Google Scholar 

  • Singh, S. P., 1993. Effect of non-auxinic chemicals on root formation in some ornamental plant cuttings. Adv. Hortic. For., 3: 207-210.

    Google Scholar 

  • Sood, V., and Nanda, K., 1979. Effect of gibberellic acid and monophenols on the flowering of Impatiens balsamina in relation to the number of inductive and non-inductive photoperiodic cycles. Physiol. Plant., 45: 250-254.

    Article  CAS  Google Scholar 

  • Tomot, B.K., Khurana, J.P., and Maheshwari, S.C., 1987. Obligate requirement of salicylic acid for short day induction of flowering in new duck weed, Wolffiela hyaline 7378. Plant Cell Physiol., 28: 349-353.

    Google Scholar 

  • Van der Straeten, D., Chaerle, L., Sharkov, G., Lambers, H., and Van Montagere, M., 1995. Salicylic acid enhances the activity of the alternative pathway of respiration in tobacco leaves and induces thermogensity. Planta, 196: 421-419.

    Article  Google Scholar 

  • Watanabe, K., Fujita, T., and Takimoto, A., 1981. Relationship between structure and flower inducing activity of benzoic acid derivatives in Lemma paucicostata 151. Plant Cell Physiol., 20: 847-850.

    Google Scholar 

  • Watanabe, K., and Takimoto, A., 1979. Flower inducing effect of benzoic acid and some related compounds in Lamma paucicostata 151. Plant Cell Physiol., 22: 1469-1479.

    Google Scholar 

  • Weissmann, G., 1991. Aspirine. Sci. Am., 264: 84-90.

    Article  PubMed  CAS  Google Scholar 

  • Yalpani, N., Leen, J., Lawthon, M. A., and Raskin, I., 1993. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol., 103: 315-321.

    PubMed  CAS  Google Scholar 

  • Yalpani, N., Schulz, M., Davies, M. P., and Balke, N. E., 1992. Partial purification of an inducible uridine-5’-diphosphate glucose : salicylic acid glucosyltransferase from oat roots. Plant Physiol., 100: 457-463.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hayat, S., Ali, B., Ahmad, A. (2007). Salicylic Acid: Biosynthesis, Metabolism and Physiological Role in Plants. In: Hayat, S., Ahmad, A. (eds) Salicylic Acid: A Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5184-0_1

Download citation

Publish with us

Policies and ethics