Skip to main content

Muscle Architecture and Adaptations to Functional Requirements

  • Chapter
Skeletal Muscle Plasticity in Health and Disease

Part of the book series: Advances in Muscle Research ((ADMR,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001). A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534: 613–23.

    Article  PubMed  CAS  Google Scholar 

  • Alexander RMcN and Vernon A (1975). The dimensions of knee and ankle muscles and the forces they exert. J Human Mov Studies 1: 115–23.

    Google Scholar 

  • Baskin RJ and Paolini PJ (1967). Volume change and pressure development in muscle during contraction. Am J Physiol 213: 1025–30.

    PubMed  CAS  Google Scholar 

  • Bleakney R, Maffulli N (2002). Ultrasound changes to intramuscular architecture of the quadriceps following intramedullary nailing. J Sports Med Phys Fitness 42: 120–5.

    PubMed  CAS  Google Scholar 

  • Chleboun GS, France AR, Crill MT, Braddock HK and Howell JN (2001). In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells Tissues Organs 169: 401–9.

    Article  PubMed  CAS  Google Scholar 

  • di Prampero PE, Narici MV (2001). Muscles in microgravity: from fibres to human motion. J Biomech 36: 403–12.

    Article  Google Scholar 

  • Edgerton, VR and Roy, RR (1996). Neuromuscular adaptations to actual and simulated spaceflight. In: Handbook of Physiology. Section 4. Environmental Physiology. III. The Gravitational Environment, Chapt. 32. M.J. Fregly and C. Blatteis (eds.), Oxford University Press, New York, p 721–763.

    Google Scholar 

  • Edgerton VR, Roy RR, Allen DL, Monti RJ (2002). Adaptations in skeletal muscle disuse or decreased-use atrophy. Am J Phys Med Rehabil 81: S127–47. Review.

    Article  PubMed  Google Scholar 

  • Epstein M and Herzog W (2003). Aspects of skeletal muscle modelling. Philos Trans R Soc Lond B Biol Sci 358: 1445–52.

    Article  PubMed  Google Scholar 

  • Fick R (1911). Spezielle Gelenk und Muskelmechanik. Vol. I. Gustav Fischer, Jena.

    Google Scholar 

  • Friederich JA and Brand RA (1990). Muscle fiber architecture in the human lower limb. J Biomech 23: 91–5.

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris CN (2001). In vivo behaviour of human muscle tendon during walking. Proc Biol Sci 268: 229–33.

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga T, Ichinose Y, Ito M, Kawakami Y and Fukashiro S (1997). Determination of fascicle length and pennation in a contracting human muscle in vivo. J Appl Physiol 82: 354–8.

    PubMed  CAS  Google Scholar 

  • Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Day MK, Lee PL, Kwong-Fu H and Edgerton VR (1992). Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res 10: 928–34.

    Article  PubMed  CAS  Google Scholar 

  • Galban CJ, Maderwald S, Uffmann K, de Greiff A and Ladd ME. (2004). Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol 93: 253–62.

    Article  PubMed  Google Scholar 

  • Gareis H, Solomonow M, Baratta R, Best R, D’Ambrosia R (1992). The isometric length-force models of nine different skeletal muscles. J Biomech 25: 903–16.

    Article  PubMed  CAS  Google Scholar 

  • Henriksson-Larsen K, Wretling ML, Lorentzon R and Oberg L (1992). Do muscle fibre size and fibre angulation correlate in pennated human muscles? Eur J Appl Physiol 64: 68–72.

    Article  CAS  Google Scholar 

  • Herbert RD, Gandevia SC (1995). Changes in pennation with joint angle and muscle torque: In vivo measurements in human brachialis muscle. J Physiol 484: 523–532.

    PubMed  CAS  Google Scholar 

  • Hodges PW, Pengel LH, Herbert RD and Gandevia SC (2003). Measurement of muscle contraction with ultrasound imaging. Muscle Nerve 27: 682–92.

    Article  PubMed  CAS  Google Scholar 

  • Ichinose Y, Kawakami Y, Ito M, Kanehisa H and Fukunaga T (2000). In vivo estimation of contraction velocity of human vastus lateralis muscle during ‘‘isokinetic’’ action. J Appl Physiol 88: 851–6.

    PubMed  CAS  Google Scholar 

  • Ichinose Y, Kawakami Y, Ito M and Fukunaga T (1997). Estimation of active force-length characteristics of human vastus lateralis muscle. Acta Anat (Basel) 159: 78–83.

    CAS  Google Scholar 

  • Ishikawa M, Komi PV (2004). Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J Appl Physiol 96: 848–52.

    Article  PubMed  Google Scholar 

  • Ito M, Kawakami Y, Ichinose Y, Fukashiro S and Fukunaga T (1998). Nonisometric behavior of fascicles during isometric contractions of a human muscle. J Appl Physiol 85: 1230–5.

    PubMed  CAS  Google Scholar 

  • Kanehisa H, Nagareda H, Kawakami Y, Akima H, Masani K, Kouzaki M, Fukunaga T (2002). Effects of equivolume isometric training programs comprising medium or high resistance on muscle size and strength. Eur J Appl Physiol 87: 112–9.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Ichinose Y and Fukunaga T (1998). Architectural and functional features of human triceps surae muscles during contraction. J Appl Physiol 85: 398–404.

    PubMed  CAS  Google Scholar 

  • Kawakami Y, Abe T and Fukunaga T (1993). Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol 74: 2740–4.

    PubMed  CAS  Google Scholar 

  • Kawakami Y, Muraoka Y, Kubo K, Suzuki Y, Fukunaga T (2000). Changes in muscle size and architecture following 20 days of bed rest. J Gravit Physiol. 2000 Dec;7(3):53–9.

    CAS  Google Scholar 

  • Lieber RL and Friden J (2000). Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23: 1647–66.

    Article  PubMed  CAS  Google Scholar 

  • Lieber RL and Brown CC (1992). Quantitative method for comparison of skeletal muscle architectural properties. J Biomech 25: 557–60.

    Article  PubMed  CAS  Google Scholar 

  • Maganaris CN (2004). A predictive model of moment-angle characteristics in human skeletal muscle: application and validation in muscles across the ankle joint. J Theor Biol 230: 89–98.

    Article  PubMed  Google Scholar 

  • Maganaris CN (2002). Tensile properties of in vivo human tendinous tissue. J Biomech 35: 1019–27.

    Article  PubMed  Google Scholar 

  • Maganaris CN (2001). Force-length characteristics of in vivo human skeletal muscle. Acta Physiol Scand 172: 279–85.

    Article  PubMed  CAS  Google Scholar 

  • Maganaris CN, Baltzopoulos V, Ball D and Sargeant AJ (2001). In vivo specific tension of human skeletal muscle. J Appl Physiol 90: 865–72.

    PubMed  CAS  Google Scholar 

  • Maganaris CN and Baltzopoulos V (1999). Predictability of in vivo changes in pennation angle of human tibialis anterior muscle from rest to maximum isometric dorsiflexion. Eur J Appl Physiol 79: 294–7.

    Article  CAS  Google Scholar 

  • Maganaris CN, Baltzopoulos V and Sargeant AJ (1998a). In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J Physiol 512: 603–14.

    Article  CAS  Google Scholar 

  • Maganaris CN, Baltzopoulos V and Sargeant AJ (1998b). Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: In vivo observations in man. J Physiol 510: 977–85.

    Article  CAS  Google Scholar 

  • Maganaris CN, Paul JP. In vivo human tendon mechanical properties (1999) J Physiol 52: 307–13.

    Google Scholar 

  • Morse CI, Thom JM, Reeves ND, Birch KM & Narici MV (2005). In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol 99: 1050–5.

    Article  PubMed  Google Scholar 

  • Morse CI, Thom JM, Mian SM, Birch KM & Narici MV (2006). Gastrocnemius specific force is increased in elderly males following a twelve month physical training programme. Eur J Appl Physiol (in press).

    Google Scholar 

  • Muramatsu T, Muraoka T, Kawakami Y, Shibayama A and Fukunaga T (2002). In vivo determination of fascicle curvature in contracting human skeletal muscles. J Appl Physiol 92: 129–34.

    Article  PubMed  Google Scholar 

  • Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F and Cerretelli P (1996). In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol 496: 287–97.

    PubMed  CAS  Google Scholar 

  • Narici M & Cerretelli P (1998). Changes in human muscle architecture in disuse-atrophy evaluated by ultrasound imaging. J Gravit Physiol 5: P73–4.

    Google Scholar 

  • Narici MV, Landoni L, Minetti AE (1992). Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol 65: 438–44.

    Article  CAS  Google Scholar 

  • Narici MV, Maganaris CN, Reeves ND, Capodaglio P (2003). Effect of aging on human muscle architecture. J Appl Physiol 95: 2229–34.

    PubMed  CAS  Google Scholar 

  • Onambele GL, Narici MV, Maganaris CN (2006). Calf muscle-tendon properties and postural balance in old age. J Appl Physiol. 100: 2048–2056.

    Article  PubMed  Google Scholar 

  • Otten E (1988). Concepts and models of functional architecture in skeletal muscle. Exerc Sport Sci Rev 16: 89–137.

    Article  PubMed  CAS  Google Scholar 

  • Reeves NJ, Maganaris CN, Ferretti G, Narici MV (2002). Influence of simulated microgravity on human skeletal muscle architecture and function. J Gravit Physiol 9: P153–4.

    Google Scholar 

  • Reeves ND, Narici MV and Maganaris CN (2004a). In vivo human muscle structure and function: adaptations to resistance training in old age. Exp Physiol 89: 675–89.

    Article  CAS  Google Scholar 

  • Reeves ND, Narici MV and Maganaris CN (2004b). Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol. 96: 885–92.

    Article  CAS  Google Scholar 

  • Reeves ND, Maganaris CN and Narici MV (2005). Plasticity of dynamic muscle performance with strength training in elderly humans. Muscle Nerve 31: 355–364.

    Article  PubMed  Google Scholar 

  • Reeves ND, Narici MV, Maganaris CN (2006). Myotendinous plasticity to ageing and resistance exercise. Exp Physiol [Epub ahead of print]

    Google Scholar 

  • Reeves ND, Narici MV, Maganaris CN (2003). Strength training alters the viscoelastic properties of tendons in elderly humans. Muscle Nerve 28: 74–81.

    Article  PubMed  Google Scholar 

  • Reeves ND, Narici MV (2003). Behavior of human muscle fascicles during shortening and lengthening contractions in vivo. J Appl Physiol 95: 1090–6.

    PubMed  Google Scholar 

  • Rutherford OM and Jones DA (1992). Measurement of fibre pennation using ultrasound in the human quadriceps in vivo. Eur J Appl Physiol 65: 433–7.

    Article  CAS  Google Scholar 

  • Scott SH, Engstrom CM and Loeb GE (1993). Morphometry of human thigh muscles. Determination of fascicle architecture by magnetic resonance imaging. J Anat 182: 249–57.

    PubMed  Google Scholar 

  • Steno N (1667). Elementorum Myologiae Specimen, seu Musculi Descriptio Geometrica. Frolence.

    Google Scholar 

  • Spanjaard M., Reeves N.D., van Dieën J.H., Baltzopoulos V., and Maganaris C.N. (2006). Human muscle fascicle behaviour during stair negotiation. 5th Word Congress of Biomechanics. Munich, July-August 2006.

    Google Scholar 

  • Spector SA, Gardiner PF, Zernicke RF, Roy RR, Edgerton VR (1980). Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control. J Neurophysiol 44: 951–60.

    PubMed  CAS  Google Scholar 

  • Van Leeuwen JL and Spoor CW. (1992). Modelling mechanically stable muscle architectures. Philos Trans R Soc Lond B Biol Sci 336: 275–92.

    Article  PubMed  Google Scholar 

  • Wickiewicz TL, Roy RR, Powell PL and Edgerton VR (1983). Muscle architecture of the human lower limb. Clin Orthop Relat Res 179: 275–83.

    Article  PubMed  Google Scholar 

  • Woittiez RD, Huijing PA, Boom HB, Rozendal RH (1984). A three-dimensional muscle model: a quantified relation between form and function of skeletal muscles. J Morphol 182: 95–113.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Narici, M., Maganaris, C. (2006). Muscle Architecture and Adaptations to Functional Requirements. In: Bottinelli, R., Reggiani, C. (eds) Skeletal Muscle Plasticity in Health and Disease. Advances in Muscle Research, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5177-8_9

Download citation

Publish with us

Policies and ethics