Skip to main content

Plasticity of Excitation-Contraction Coupling in Skeletal Muscle

  • Chapter
Skeletal Muscle Plasticity in Health and Disease

Part of the book series: Advances in Muscle Research ((ADMR,volume 2))

  • 712 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams BA & Beam KG. (1990). Muscular dysgenesis in mice: a model system for studying excitation-contraction coupling. Faseb J 4, 2809–2816.

    PubMed  CAS  Google Scholar 

  • Adams BA, Tanabe T, Mikami A, Numa S & Beam KG. (1990). Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature 346, 569–572.

    PubMed  CAS  Google Scholar 

  • Adams GR & McCue SA. (1998). Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84, 1716–1722.

    PubMed  CAS  Google Scholar 

  • Ahern CA, Powers PA, Biddlecome GH, Roethe L, Vallejo P, Mortenson L, Strube C, Campbell KP, Coronado R & Gregg RG. (2001). Modulation of L-type Ca2+ current but not activation of Ca2+ release by the gamma1 subunit of the dihydropyridine receptor of skeletal muscle. BMC Physiol 1, 8.

    PubMed  CAS  Google Scholar 

  • Ahern GP, Junankar PR & Dulhunty AF. (1994). Single channel activity of the ryanodine receptor calcium release channel is modulated by FK-506. FEBS Lett 352, 369–374.

    PubMed  CAS  Google Scholar 

  • Ahern GP, Junankar PR & Dulhunty AF. (1997). Subconductance states in single-channel activity of skeletal muscle ryanodine receptors after removal of FKBP12. Biophys J 72, 146–162.

    PubMed  CAS  Google Scholar 

  • Albuquerque EX, Warnick JE, Sansone FM & Onur R. (1974). Trophic functions of the neuron. 3. Mechanisms of neurotrophic interactions. The effects of vinblastine and colchicine on neural regulation of muscle. Ann N Y Acad Sci 228, 224–243.

    PubMed  CAS  Google Scholar 

  • Alden KJ & Garcia J. (2001). Differential effect of gabapentin on neuronal and muscle calcium currents. J Pharmacol Exp Ther 297, 727–735.

    PubMed  CAS  Google Scholar 

  • Alden KJ & Garcia J. (2002). Dissociation of charge movement from calcium release and calcium current in skeletal myotubes by gabapentin. Am J Physiol Cell Physiol 283, C941–949.

    PubMed  CAS  Google Scholar 

  • Andersson AM, Olsen M, Zhernosekov D, Gaardsvoll H, Krog L, Linnemann D & Bock E. (1993). Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle: a comparative study of newborn, adult and aged rats. Biochem J 290 (Pt 3), 641–648.

    PubMed  CAS  Google Scholar 

  • Armstrong C, Benzanilla F & Horowicz P. (1972). Twitches in the presence of ethylene glycol bis(-aminoethyl ether)-N,N-9-tetraacetic acid. Biochim Biophys Acta 267, 605–608.

    PubMed  CAS  Google Scholar 

  • Bangalore R, Mehrke G, Gingrich K, Hofmann F & Kass RS. (1996). Influence of L-type Ca channel alpha 2/delta-subunit on ionic and gating current in transiently transfected HEK 293 cells. Am J Physiol 270, H1521–1528.

    PubMed  CAS  Google Scholar 

  • Barg S, Copello JA & Fleischer S. (1997). Different interactions of cardiac and skeletal muscle ryanodine receptors with FK-506 binding protein isoforms. Am J Physiol 272, C1726–1733.

    PubMed  CAS  Google Scholar 

  • Barone V, Bertocchini F, Bottinelli R, Protasi F, Allen PD, Franzini Armstrong C, Reggiani C & Sorrentino V. (1998). Contractile impairment and structural alterations of skeletal muscles from knockout mice lacking type 1 and type 3 ryanodine receptors. FEBS Lett 422, 160–164.

    PubMed  CAS  Google Scholar 

  • Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N & Sweeney HL. (1998). Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci U S A 95, 15603–15607.

    PubMed  CAS  Google Scholar 

  • Bassey E, Fiatorone M, O’Neill E, Kelly M, Evans W & Lipsitz L. (1992). Leg extensor power and functional performance in very old men and women. Clin Sci 82, 321–327.

    PubMed  CAS  Google Scholar 

  • Bastide B, Conti A, Sorrentino V & Mounier Y. (2000). Properties of ryanodine receptor in rat muscles submitted to unloaded conditions. Biochem Biophys Res Commun 270, 442–447.

    PubMed  CAS  Google Scholar 

  • Beard NA, Laver DR & Dulhunty AF. (2004). Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol 85, 33–69.

    PubMed  CAS  Google Scholar 

  • Beard NA, Sakowska MM, Dulhunty AF & Laver DR. (2002). Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels. Biophys J 82, 310–320.

    PubMed  CAS  Google Scholar 

  • Bergman E, Ulfhake B & Fundin BT. (2000). Regulation of NGF-family ligands and receptors in adulthood and senescence: correlation to degenerative and regenerative changes in cutaneous innervation. Eur J Neurosci 12, 2694–2706.

    PubMed  CAS  Google Scholar 

  • Bertocchini F, Ovitt CE, Conti A, Barone V, Scholer HR, Bottinelli R, Reggiani C & Sorrentino V. (1997). Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles. Embo J 16, 6956–6963.

    PubMed  CAS  Google Scholar 

  • Beurg M, Ahern CA, Vallejo P, Conklin MW, Powers PA, Gregg RG & Coronado R. (1999a). Involvement of the carboxy-terminus region of the dihydropyridine receptor beta1a subunit in excitation-contraction coupling of skeletal muscle. Biophys J 77, 2953–2967.

    CAS  Google Scholar 

  • Beurg M, Sukhareva M, Ahern CA, Conklin MW, Perez-Reyes E, Powers PA, Gregg RG & Coronado R. (1999b). Differential regulation of skeletal muscle L-type Ca2+ current and excitation-contraction coupling by the dihydropyridine receptor beta subunit. Biophys J 76, 1744–1756.

    CAS  Google Scholar 

  • Beurg M, Sukhareva M, Strube C, Powers PA, Gregg RG & Coronado R. (1997). Recovery of Ca2+ current, charge movements, and Ca2+ transients in myotubes deficient in dihydropyridine receptor beta 1 subunit transfected with beta 1 cDNA. Biophys J 73, 807–818.

    PubMed  CAS  Google Scholar 

  • Block BA, Imagawa T, Campbell KP & Franzini-Armstrong C. (1988). Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107, 2587–2600.

    PubMed  CAS  Google Scholar 

  • Boulanger L & Poo MM. (1999). Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nat Neurosci 2, 346–351.

    PubMed  CAS  Google Scholar 

  • Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasova E, Moschella MC, Jayaraman T, Landers M, Ehrlich BE & Marks AR. (1994). Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77, 513–523.

    PubMed  CAS  Google Scholar 

  • Brooks SV & Faulkner JA. (1988). Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404, 71–82.

    PubMed  CAS  Google Scholar 

  • Brown M, Sinacore DR & Host HH. (1995). The relationship of strength to function in the older adult. J Gerontol A Biol Sci Med Sci 50 Spec No, 55–59.

    Google Scholar 

  • Brum G, Rios E & Stefani E. (1988). Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres. J Physiol 398, 441–473.

    PubMed  CAS  Google Scholar 

  • Brust PF, Simerson S, McCue AF, Deal CR, Schoonmaker S, Williams ME, Velicelebi G, Johnson EC, Harpold MM & Ellis SB. (1993). Human neuronal voltage-dependent calcium channels: studies on subunit structure and role in channel assembly. Neuropharmacology 32, 1089–1102.

    PubMed  CAS  Google Scholar 

  • Buller AJ, Eccles JC & Eccles RM. (1960a). Differentiation of fast and slow muscles in the cat hind limb. J Physiol 150, 399–416.

    CAS  Google Scholar 

  • Buller AJ, Eccles JC & Eccles RM. (1960b). Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol 150, 417–439.

    CAS  Google Scholar 

  • Carl SL, Felix K, Caswell AH, Brandt NR, Ball WJ, Jr., Vaghy PL, Meissner G & Ferguson DG. (1995). Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J Cell Biol 129, 672–682.

    PubMed  CAS  Google Scholar 

  • Carlson BM, Dedkov EI, Borisov AB & Faulkner JA. (2001). Skeletal muscle regeneration in very old rats. J Gerontol A Biol Sci Med Sci 56, B224–233.

    PubMed  CAS  Google Scholar 

  • Carlson BM & Faulkner JA. (1989). Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol 256, C1262–1266.

    PubMed  CAS  Google Scholar 

  • Caroni P & Becker M. (1992). The downregulation of growth-associated proteins in motoneurons at the onset of synapse elimination is controlled by muscle activity and IGF1. J Neurosci 12, 3849–3861.

    PubMed  CAS  Google Scholar 

  • Caroni P & Grandes P. (1990). Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. J Cell Biol 110, 1307–1317.

    PubMed  CAS  Google Scholar 

  • Caroni P & Schneider C. (1994). Signaling by insulin-like growth factors in paralyzed skeletal muscle: rapid induction of IGF1 expression in muscle fibers and prevention of interstitial cell proliferation by IGF-BP5 and IGF-BP4. J Neurosci 14, 3378–3388.

    PubMed  CAS  Google Scholar 

  • Caroni P, Schneider C, Kiefer MC & Zapf J. (1994). Role of muscle insulin-like growth factors in nerve sprouting: suppression of terminal sprouting in paralyzed muscle by IGF-binding protein 4. J Cell Biol 125, 893–902.

    PubMed  CAS  Google Scholar 

  • Catterall WA. (1991). Functional subunit structure of voltage-gated calcium channels. Science 253, 1499–1500.

    PubMed  CAS  Google Scholar 

  • Catterall WA, Scheuer T, Thomsen W & Rossie S. (1991). Structure and modulation of voltage-gated ion channels. Ann N Y Acad Sci 625, 174–180.

    PubMed  CAS  Google Scholar 

  • Catterall WA, Seagar MJ & Takahashi M. (1988). Molecular properties of dihydropyridine-sensitive calcium channels in skeletal muscle. J Biol Chem 263, 3535–3538.

    PubMed  CAS  Google Scholar 

  • Ceballos D, Cuadras J, Verdu E & Navarro X. (1999). Morphometric and ultrastructural changes with ageing in mouse peripheral nerve. J Anat 195 (Pt 4), 563–576.

    PubMed  Google Scholar 

  • Cederna PS, Asato H, Gu X, van der Meulen J, Kuzon WM, Jr., Carlson BM & Faulkner JA. (2001). Motor unit properties of nerve-intact extensor digitorum longus muscle grafts in young and old rats. J Gerontol A Biol Sci Med Sci 56, B254–258.

    PubMed  CAS  Google Scholar 

  • Chakravarthy MV, Fiorotto ML, Schwartz RJ & Booth FW. (2001). Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice. Mech Ageing Dev 122, 1303–1320.

    PubMed  CAS  Google Scholar 

  • Chaudhari N & Beam KG. (1993). mRNA for cardiac calcium channel is expressed during development of skeletal muscle. Dev Biol 155, 507–515.

    PubMed  CAS  Google Scholar 

  • Chen SR, Li X, Ebisawa K & Zhang L. (1997). Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J Biol Chem 272, 24234–24246.

    PubMed  CAS  Google Scholar 

  • Chen SR, Zhang L & MacLennan DH. (1994). Asymmetrical blockade of the Ca2+ release channel (ryanodine receptor) by 12-kDa FK506 binding protein. Proc Natl Acad Sci U S A 91, 11953–11957.

    PubMed  CAS  Google Scholar 

  • Chun LG, Ward CW & Schneider MF. (2003). Ca2+ sparks are initiated by Ca2+ entry in embryonic mouse skeletal muscle and decrease in frequency postnatally. Am J Physiol Cell Physiol 285, C686–697.

    PubMed  CAS  Google Scholar 

  • Clancy JS, Takeshima H, Hamilton SL & Reid MB. (1999). Contractile function is unaltered in diaphragm from mice lacking calcium release channel isoform 3. Am J Physiol 277, R1205–1209.

    PubMed  CAS  Google Scholar 

  • Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C & Schwartz RJ. (1995). Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270, 12109–12116.

    PubMed  CAS  Google Scholar 

  • Contreras PC, Steffler C, Yu E, Callison K, Stong D & Vaught JL. (1995). Systemic administration of rhIGF-I enhanced regeneration after sciatic nerve crush in mice. J Pharmacol Exp Ther 274, 1443–1449.

    PubMed  CAS  Google Scholar 

  • Copello JA, Barg S, Sonnleitner A, Porta M, Diaz-Sylvester P, Fill M, Schindler H & Fleischer S. (2002). Differential activation by Ca2+, ATP and caffeine of cardiac and skeletal muscle ryanodine receptors after block by Mg2+. J Membr Biol 187, 51–64.

    PubMed  CAS  Google Scholar 

  • Cowen T & Gavazzi I. (1998). Plasticity in adult and ageing sympathetic neurons. Prog Neurobiol 54, 249–288.

    PubMed  CAS  Google Scholar 

  • Czerwinski SM, Novakofski J & Bechtel PJ. (1993). Modulation of IGF mRNA abundance during muscle denervation atrophy. Med Sci Sports Exerc 25, 1005–1008.

    PubMed  CAS  Google Scholar 

  • Davies AM. (1996). The neurotrophic hypothesis: where does it stand? Philos Trans R Soc Lond B Biol Sci 351, 389–394.

    PubMed  CAS  Google Scholar 

  • De Jongh KS, Merrick DK & Catterall WA. (1989). Subunits of purified calcium channels: a 212-kDa form of alpha 1 and partial amino acid sequence of a phosphorylation site of an independent beta subunit. Proc Natl Acad Sci U S A 86, 8585–8589.

    PubMed  Google Scholar 

  • De Jongh KS, Murphy BJ, Colvin AA, Hell JW, Takahashi M & Catterall WA. (1996). Specific phosphorylation of a site in the full-length form of the alpha 1 subunit of the cardiac L-type calcium channel by adenosine 3’,5’-cyclic monophosphate-dependent protein kinase. Biochemistry 35, 10392–10402.

    PubMed  Google Scholar 

  • De Jongh KS, Warner C & Catterall WA. (1990). Subunits of purified calcium channels. Alpha 2 and delta are encoded by the same gene. J Biol Chem 265, 14738–14741.

    PubMed  Google Scholar 

  • De Waard M, Pragnell M & Campbell KP. (1994). Ca2+ channel regulation by a conserved beta subunit domain. Neuron 13, 495–503.

    PubMed  Google Scholar 

  • Delbono O. (1992). Calcium current activation and charge movement in denervated mammalian skeletal muscle fibres. J Physiol 451, 187–203.

    PubMed  CAS  Google Scholar 

  • Delbono O. (2003). Neural control of aging skeletal muscle. Aging Cell 2, 21–29.

    PubMed  CAS  Google Scholar 

  • Delbono O & Chu A. (1995). Ca2+ release channels in rat denervated skeletal muscles. Exp Physiol 80, 561–574.

    PubMed  CAS  Google Scholar 

  • Delbono O, O’Rourke KS & Ettinger WH. (1995). Excitation-calcium release uncoupling in aged single human skeletal muscle fibers. J Membr Biol 148, 211–222.

    PubMed  CAS  Google Scholar 

  • Delbono O & Stefani E. (1993). Calcium current inactivation in denervated rat skeletal muscle fibres. J Physiol 460, 173–183.

    PubMed  CAS  Google Scholar 

  • Dietze B, Bertocchini F, Barone V, Struk A, Sorrentino V & Melzer W. (1998). Voltage-controlled Ca2+ release in normal and ryanodine receptor type 3 (RyR3)-deficient mouse myotubes. J Physiol 513 (Pt 1), 3–9.

    PubMed  CAS  Google Scholar 

  • Diffee GM, Caiozzo VJ, Herrick RE & Baldwin KM. (1991). Contractile and biochemical properties of rat soleus and plantaris after hindlimb suspension. Am J Physiol 260, C528–534.

    PubMed  CAS  Google Scholar 

  • Doherty TJ, Vandervoort AA, Taylor AW & Brown WF. (1993). Effects of motor unit losses on strength in older men and women. J Appl Physiol 74, 868–874.

    PubMed  CAS  Google Scholar 

  • Dulhunty A & Gage P. (1988). Effects of extracellular calcium concentration and dihydropyridines on contraction mammalian skeletal muscle. J Physiol 399, 63–80.

    PubMed  CAS  Google Scholar 

  • Dulhunty AF & Gage PW. (1985). Excitation-contraction coupling and charge movement in denervated rat extensor digitorum longus and soleus muscles. J Physiol 358, 75–89.

    PubMed  CAS  Google Scholar 

  • Dulhunty AF, Gage PW & Valois AA. (1984). Indentations in the terminal cisternae of denervated rat EDL and soleus muscle fibers. J Ultrastruct Res 88, 30–43.

    PubMed  CAS  Google Scholar 

  • Dutta C. (1997). Significance of sarcopenia in the elderly. J Nutr 127, 992S–993S.

    PubMed  CAS  Google Scholar 

  • Einsiedel LJ & Luff AR. (1992a). Alterations in the contractile properties of motor units within the ageing rat medial gastrocnemius. J Neurol Sci 112, 170–177.

    CAS  Google Scholar 

  • Einsiedel LJ & Luff AR. (1992b). Effect of partial denervation on motor units in the ageing rat medial gastrocnemius. J Neurol Sci 112, 178–184.

    CAS  Google Scholar 

  • Fabiato A. (1983). Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245, C1–14.

    PubMed  CAS  Google Scholar 

  • Fabiato A. (1985). Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85, 291–320.

    PubMed  CAS  Google Scholar 

  • Felder E, Protasi F, Hirsch R, Franzini-Armstrong C & Allen PD. (2002). Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle. Biophys J 82, 3144–3149.

    PubMed  CAS  Google Scholar 

  • Fernandez HL & Hodges-Savola CA. (1994). Axoplasmic transport of calcitonin gene-related peptide in rat peripheral nerve as a function of age. Neurochem Res 19, 1369–1377.

    PubMed  CAS  Google Scholar 

  • Fessenden JD, Wang Y, Moore RA, Chen SR, Allen PD & Pessah IN. (2000). Divergent functional properties of ryanodine receptor types 1 and 3 expressed in a myogenic cell line. Biophys J 79, 2509–2525.

    PubMed  CAS  Google Scholar 

  • Fill M & Copello JA. (2002). Ryanodine receptor calcium release channels. Physiol Rev 82, 893–922.

    PubMed  CAS  Google Scholar 

  • Fiorotto ML, Schwartz RJ & Delaughter MC. (2003). Persistent IGF-I overexpression in skeletal muscle transiently enhances DNA accretion and growth. Faseb J 17, 59–60.

    PubMed  CAS  Google Scholar 

  • Flucher BE, Andrews SB & Daniels MP. (1994). Molecular organization of transverse tubule/sarcoplasmic reticulum junctions during development of excitation-contraction coupling in skeletal muscle. Mol Biol Cell 5, 1105–1118.

    PubMed  CAS  Google Scholar 

  • Flucher BE, Conti A, Takeshima H & Sorrentino V. (1999). Type 3 and type 1 ryanodine receptors are localized in triads of the same mammalian skeletal muscle fibers. J Cell Biol 146, 621–630.

    PubMed  CAS  Google Scholar 

  • Flucher BE & Franzini-Armstrong C. (1996). Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle. Proc Natl Acad Sci U S A 93, 8101–8106.

    PubMed  CAS  Google Scholar 

  • Flucher BE, Takekura H & Franzini-Armstrong C. (1993). Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev Biol 160, 135–147.

    PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C & Kish JW. (1995). Alternate disposition of tetrads in peripheral couplings of skeletal muscle. J Muscle Res Cell Motil 16, 319–324.

    PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C, Protasi F & Ramesh V. (1998). Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle. Ann N Y Acad Sci 853, 20–30.

    PubMed  CAS  Google Scholar 

  • Franzini Armstrong C. (1970). Studies of the triad. I. Structure of the junction in frog twitch fibers. J Cell Biol 47, 488–498.

    Google Scholar 

  • Freise D, Held B, Wissenbach U, Pfeifer A, Trost C, Himmerkus N, Schweig U, Freichel M, Biel M, Hofmann F, Hoth M & Flockerzi V. (2000). Absence of the gamma subunit of the skeletal muscle dihydropyridine receptor increases L-type Ca2+ currents and alters channel inactivation properties. J Biol Chem 275, 14476–14481.

    PubMed  CAS  Google Scholar 

  • Frey D, Schneider C, Xu L, Borg J, Spooren W & Caroni P. (2000). Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 20, 2534–2542.

    PubMed  CAS  Google Scholar 

  • Frontera WR, Hughes VA, Lutz KJ & Evans WJ. (1991). A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol 71, 644–650.

    PubMed  CAS  Google Scholar 

  • Frontera WR, Suh D, Krivickas LS, Hughes VA, Goldstein R & Roubenoff R. (2000). Skeletal muscle fiber quality in older men and women. Am J Physiol Cell Physiol 279, C611–618.

    PubMed  CAS  Google Scholar 

  • Fruen BR, Bardy JM, Byrem TM, Strasburg GM & Louis CF. (2000). Differential Ca(2+) sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol Cell Physiol 279, C724–733.

    PubMed  CAS  Google Scholar 

  • Fryer MW & Stephenson DG. (1996). Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle. J Physiol 493 (Pt 2), 357–370.

    PubMed  CAS  Google Scholar 

  • Funakoshi H, Belluardo N, Arenas E, Yamamoto Y, Casabona A, Persson H & Ibanez CF. (1995). Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science 268, 1495–1499.

    PubMed  CAS  Google Scholar 

  • Gao T, Yatani A, Dell’Acqua ML, Sako H, Green SA, Dascal N, Scott JD & Hosey MM. (1997). cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19, 185–196.

    PubMed  CAS  Google Scholar 

  • Garcia J, Tanabe T & Beam KG. (1994). Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors. J Gen Physiol 103, 125–147.

    PubMed  CAS  Google Scholar 

  • Gardetto PR, Schluter JM & Fitts RH. (1989). Contractile function of single muscle fibers after hindlimb suspension. J Appl Physiol 66, 2739–2749.

    PubMed  CAS  Google Scholar 

  • Giannini G, Clementi E, Ceci R, Marziali G & Sorrentino V. (1992). Expression of a ryanodine receptor-Ca2+ channel that is regulated by TGF-beta. Science 257, 91–94.

    PubMed  CAS  Google Scholar 

  • Giannini G, Conti A, Mammarella S, Scrobogna M & Sorrentino V. (1995). The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 128, 893–904.

    PubMed  CAS  Google Scholar 

  • González-Serratos H, Valle-Aguilera R, Lathrop DA & Garcia MC. (1982). Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling. Nature 298, 292–294.

    PubMed  Google Scholar 

  • González E, Messi ML & Delbono O. (2000). The specific force of single intact extensor digitorum longus and soleus mouse muscle fibers declines with aging. J Membr Biol 178, 175–183.

    PubMed  Google Scholar 

  • González E, Messi ML, Zheng Z & Delbono O. (2003). Insulin-like growth factor-1 prevents age-related decrease in specific force and intracellular Ca2+ in single intact muscle fibres from transgenic mice. J Physiol 552, 833–844.

    PubMed  Google Scholar 

  • Greensmith L & Vrbova G. (1996). Motoneurone survival: a functional approach. Trends Neurosci 19, 450–455.

    PubMed  CAS  Google Scholar 

  • Gregg RG, Messing A, Strube C, Beurg M, Moss R, Behan M, Sukhareva M, Haynes S, Powell JA, Coronado R & Powers PA. (1996). Absence of the beta subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the alpha 1 subunit and eliminates excitation-contraction coupling. Proc Natl Acad Sci U S A 93, 13961–13966.

    PubMed  CAS  Google Scholar 

  • Gurnett CA, De Waard M & Campbell KP. (1996). Dual function of the voltage-dependent Ca2+ channel alpha 2 delta subunit in current stimulation and subunit interaction. Neuron 16, 431–440.

    PubMed  CAS  Google Scholar 

  • Hameed M, Harridge SD & Goldspink G. (2002). Sarcopenia and hypertrophy: a role for insulin-like growth factor-1 in aged muscle? Exerc Sport Sci Rev 30, 15–19.

    PubMed  Google Scholar 

  • Hameed M, Orrell RW, Cobbold M, Goldspink G & Harridge SD. (2003). Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547, 247–254.

    PubMed  CAS  Google Scholar 

  • Hammarberg H, Risling M, Hokfelt T, Cullheim S & Piehl F. (1998). Expression of insulin-like growth factors and corresponding binding proteins (IGFBP 1–6) in rat spinal cord and peripheral nerve after axonal injuries. J Comp Neurol 400, 57–72.

    PubMed  CAS  Google Scholar 

  • Hashizume K & Kanda K. (1995). Differential effects of aging on motoneurons and peripheral nerves innervating the hindlimb and forelimb muscles of rats. Neurosci Res 22, 189–196.

    PubMed  CAS  Google Scholar 

  • Hashizume K, Kanda K & Burke RE. (1988). Medial gastrocnemius motor nucleus in the rat: age-related changes in the number and size of motoneurons. J Comp Neurol 269, 425–430.

    PubMed  CAS  Google Scholar 

  • Hicks A, Ohlendieck K, Gopel SO & Pette D. (1997). Early functional and biochemical adaptations to low-frequency stimulation of rabbit fast-twitch muscle. Am J Physiol 273, C297–305.

    PubMed  CAS  Google Scholar 

  • Ikemoto N, Antoniu B, Kang JJ, Meszaros LG & Ronjat M. (1991). Intravesicular calcium transient during calcium release from sarcoplasmic reticulum. Biochemistry 30, 5230–5237.

    PubMed  CAS  Google Scholar 

  • Jacob JM & McQuarrie IG. (1991). Axotomy accelerates slow component b of axonal transport. J Neurobiol 22, 570–582.

    PubMed  CAS  Google Scholar 

  • Jacob JM & McQuarrie IG. (1993). Acceleration of axonal outgrowth in rat sciatic nerve at one week after axotomy. J Neurobiol 24, 356–367.

    PubMed  CAS  Google Scholar 

  • Jay SD, Sharp AH, Kahl SD, Vedvick TS, Harpold MM & Campbell KP. (1991). Structural characterization of the dihydropyridine-sensitive calcium channel alpha 2-subunit and the associated delta peptides. J Biol Chem 266, 3287–3293.

    PubMed  CAS  Google Scholar 

  • Jayaraman T, Brillantes AM, Timerman AP, Fleischer S, Erdjument-Bromage H, Tempst P & Marks AR. (1992). FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem 267, 9474–9477.

    PubMed  CAS  Google Scholar 

  • Jeyakumar LH, Copello JA, O’Malley AM, Wu GM, Grassucci R, Wagenknecht T & Fleischer S. (1998). Purification and characterization of ryanodine receptor 3 from mammalian tissue. J Biol Chem 273, 16011–16020.

    PubMed  CAS  Google Scholar 

  • Johnson BD, Brousal JP, Peterson BZ, Gallombardo PA, Hockerman GH, Lai Y, Scheuer T & Catterall WA. (1997). Modulation of the cloned skeletal muscle L-type Ca2+ channel by anchored cAMP-dependent protein kinase. J Neurosci 17, 1243–1255.

    PubMed  CAS  Google Scholar 

  • Johnson BD, Scheuer T & Catterall WA. (1994). Voltage-dependent potentiation of L-type Ca2+ channels in skeletal muscle cells requires anchored cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 91, 11492–11496.

    PubMed  CAS  Google Scholar 

  • Jubrias SA, Odderson IR, Esselman PC & Conley KE. (1997). Decline in isokinetic force with age: muscle cross-sectional area and specific force. Pflugers Arch 434, 246–253.

    PubMed  CAS  Google Scholar 

  • Kadhiresan VA, Hassett CA & Faulkner JA. (1996). Properties of single motor units in medial gastrocnemius muscles of adult and old rats. J Physiol 493 (Pt 2), 543–552.

    PubMed  CAS  Google Scholar 

  • Kanda K & Hashizume K. (1989). Changes in properties of the medial gastrocnemius motor units in aging rats. J Neurophysiol 61, 737–746.

    PubMed  CAS  Google Scholar 

  • Kanda K & Hashizume K. (1992). Factors causing difference in force output among motor units in the rat medial gastrocnemius muscle. J Physiol 448, 677–695.

    PubMed  CAS  Google Scholar 

  • Kandarian S, O’Brien S, Thomas K, Schulte L & Navarro J. (1992). Regulation of skeletal muscle dihydropyridine receptor gene expression by biomechanical unloading. J Appl Physiol 72, 2510–2514.

    PubMed  CAS  Google Scholar 

  • Kandarian SC, Peters DG, Favero TG, Ward CW & Williams JH. (1996). Adaptation of the skeletal muscle calcium-release mechanism to weight-bearing condition. Am J Physiol 270, C1588–1594.

    PubMed  CAS  Google Scholar 

  • Kawabuchi M, Zhou CJ, Wang S, Nakamura K, Liu WT & Hirata K. (2001). The spatiotemporal relationship among Schwann cells, axons and postsynaptic acetylcholine receptor regions during muscle reinnervation in aged rats. Anat Rec 264, 183–202.

    PubMed  CAS  Google Scholar 

  • Kawasaki T & Kasai M. (1994). Regulation of calcium channel in sarcoplasmic reticulum by calsequestrin. Biochem Biophys Res Commun 199, 1120–1127.

    PubMed  CAS  Google Scholar 

  • Kerezoudi E & Thomas PK. (1999). Influence of age on regeneration in the peripheral nervous system. Gerontology 45, 301–306.

    PubMed  CAS  Google Scholar 

  • Krishan K & Dhoot GK. (1996). Changes in some troponin and insulin-like growth factor messenger ribonucleic acids in regenerating and denervated skeletal muscles. J Muscle Res Cell Motil 17, 513–521.

    PubMed  CAS  Google Scholar 

  • Lai Y, Seagar MJ, Takahashi M & Catterall WA. (1990). Cyclic AMP-dependent phosphorylation of two size forms of alpha 1 subunits of L-type calcium channels in rat skeletal muscle cells. J Biol Chem 265, 20839–20848.

    PubMed  CAS  Google Scholar 

  • Lamb GD & Stephenson DG. (1991). Effect of Mg2+ on the control of Ca2+ release in skeletal muscle fibres of the toad. J Physiol 434, 507–528.

    PubMed  CAS  Google Scholar 

  • Larsson L. (1995). Motor units: remodeling in aged animals. J Gerontol A Biol Sci Med Sci 50 Spec No, 91–95.

    Google Scholar 

  • Larsson L, Li X & Frontera WR. (1997). Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Physiol 272, C638–649.

    PubMed  CAS  Google Scholar 

  • Laver DR, Baynes TM & Dulhunty AF. (1997). Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms. J Membr Biol 156, 213–229.

    PubMed  CAS  Google Scholar 

  • Leung AT, Imagawa T & Campbell KP. (1987). Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J Biol Chem 262, 7943–7946.

    PubMed  CAS  Google Scholar 

  • Lexell J. (1995). Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50 Spec No, 11–16.

    Google Scholar 

  • Li X & Larsson L. (1996). Maximum shortening velocity and myosin isoforms in single muscle fibers from young and old rats. Am J Physiol 270, C352–360.

    PubMed  CAS  Google Scholar 

  • Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin J, Roy TA & Hurley BF. (1997). Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol 83, 1581–1587.

    PubMed  CAS  Google Scholar 

  • Lohof AM, Ip NY & Poo MM. (1993). Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363, 350–353.

    PubMed  CAS  Google Scholar 

  • Lowe DA, Thomas DD & Thompson LV. (2002). Force generation, but not myosin ATPase activity, declines with age in rat muscle fibers. Am J Physiol Cell Physiol 283, C187–192.

    PubMed  CAS  Google Scholar 

  • Lynch NA, Metter EJ, Lindle RS, Fozard JL, Tobin JD, Roy TA, Fleg JL & Hurley BF. (1999). Muscle quality. I. Age-associated differences between arm and leg muscle groups. J Appl Physiol 86, 188–194.

    PubMed  CAS  Google Scholar 

  • MacLennan DH & Wong PT. (1971). Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A 68, 1231–1235.

    PubMed  CAS  Google Scholar 

  • Marty I, Robert M, Villaz M, De Jongh K, Lai Y, Catterall WA & Ronjat M. (1994). Biochemical evidence for a complex involving dihydropyridine receptor and ryanodine receptor in triad junctions of skeletal muscle. Proc Natl Acad Sci U S A 91, 2270–2274.

    PubMed  CAS  Google Scholar 

  • Marx SO, Ondrias K & Marks AR. (1998). Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science 281, 818–821.

    PubMed  CAS  Google Scholar 

  • Mathews LS, Hammer RE, Behringer RR, D’Ercole AJ, Bell GI, Brinster RL & Palmiter RD. (1988). Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology 123, 2827–2833.

    PubMed  CAS  Google Scholar 

  • Mayrleitner M, Timerman AP, Wiederrecht G & Fleischer S. (1994). The calcium release channel of sarcoplasmic reticulum is modulated by FK-506 binding protein: effect of FKBP-12 on single channel activity of the skeletal muscle ryanodine receptor. Cell Calcium 15, 99–108.

    PubMed  CAS  Google Scholar 

  • McQuarrie IG, Brady ST & Lasek RJ. (1989). Retardation in the slow axonal transport of cytoskeletal elements during maturation and aging. Neurobiol Aging 10, 359–365.

    PubMed  CAS  Google Scholar 

  • Meissner G, Rios E, Tripathy A & Pasek DA. (1997). Regulation of skeletal muscle Ca2+ release channel (ryanodine receptor) by Ca2+ and monovalent cations and anions. J Biol Chem 272, 1628–1638.

    PubMed  CAS  Google Scholar 

  • Melzer W, Herrmann-Frank A & Luttgau HC. (1995). The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta 1241, 59–116.

    PubMed  Google Scholar 

  • Messi ML & Delbono O. (2003). Target-derived trophic effect on skeletal muscle innervation in senescent mice. J Neurosci 23, 1351–1359.

    PubMed  CAS  Google Scholar 

  • Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H, Narumiya S & Numa S. (1989). Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340, 230–233.

    PubMed  CAS  Google Scholar 

  • Mori Y, Friedrich T, Kim MS, Mikami A, Nakai J, Ruth P, Bosse E, Hofmann F, Flockerzi V, Furuichi T, Tikoshiba K, Imoto K, Tanabe T & Numa S. (1991). Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350, 398–402.

    PubMed  CAS  Google Scholar 

  • Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL & Rosenthal N. (2001). Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27, 195–200.

    PubMed  CAS  Google Scholar 

  • Nabauer M, Callewaert G, Cleemann L & Morad M. (1989). Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800–803.

    PubMed  CAS  Google Scholar 

  • Nakai J, Dirkesen R, Nguyen H, Pessah I, Beam K & Allen P. (1996). Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380, 72–75.

    PubMed  CAS  Google Scholar 

  • Nakai J, Imagawa T, Hakamata Y, Shigekawa M, Takeshima H & Numa S. (1990). Primary structure and functional expression from cDNA of the cardiac ryanodine receptor/calcium release channel. FEBS Lett 271, 169–177.

    PubMed  CAS  Google Scholar 

  • Neff NT, Prevette D, Houenou LJ, Lewis ME, Glicksman MA, Yin QW & Oppenheim RW. (1993). Insulin-like growth factors: putative muscle-derived trophic agents that promote motoneuron survival. J Neurobiol 24, 1578–1588.

    PubMed  CAS  Google Scholar 

  • Nunoki K, Florio V & Catterall WA. (1989). Activation of purified calcium channels by stoichiometric protein phosphorylation. Proc Natl Acad Sci U S A 86, 6816–6820.

    PubMed  CAS  Google Scholar 

  • Ohlendieck K, Briggs FN, Lee KF, Wechsler AW & Campbell KP. (1991). Analysis of excitation-contraction-coupling components in chronically stimulated canine skeletal muscle. Eur J Biochem 202, 739–747.

    PubMed  CAS  Google Scholar 

  • Ohlendieck K, Fromming GR, Murray BE, Maguire PB, Leisner E, Traub I & Pette D. (1999). Effects of chronic low-frequency stimulation on Ca2+-regulatory membrane proteins in rabbit fast muscle. Pflugers Arch 438, 700–708.

    PubMed  CAS  Google Scholar 

  • Ottini L, Marziali G, Conti A, Charlesworth A & Sorrentino V. (1996). Alpha and beta isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3. Biochem J 315 (Pt 1), 207–216.

    PubMed  CAS  Google Scholar 

  • Paolini C, Protasi F & Franzini-Armstrong C. (2004). The relative position of RyR feet and DHPR tetrads in skeletal muscle. J Mol Biol 342, 145–153.

    PubMed  CAS  Google Scholar 

  • Pauwels PJ, Van Assouw HP & Leysen JE. (1987). Depolarization of chick myotubes triggers the appearance of (+)-[3H]PN 200–110-binding sites. Mol Pharmacol 32, 785–791.

    PubMed  CAS  Google Scholar 

  • Payne AM & Delbono O. (2004). Neurogenesis of excitation-contraction uncoupling in aging skeletal muscle. Exerc Sport Sci Rev 32, 36–40.

    PubMed  Google Scholar 

  • Payne AM, Dodd SL & Leeuwenburgh C. (2003). Life-long calorie restriction in Fischer 344 rats attenuates age-related loss in skeletal muscle-specific force and reduces extracellular space. J Appl Physiol 95, 2554–2562.

    PubMed  Google Scholar 

  • Payne AM, Zheng Z, Gonzalez E, Wang ZM, Messi ML & Delbono O. (2004). External Ca2+ -dependent excitation-contraction coupling in a population of ageing mouse skeletal muscle fibres. J Physiol 560, 137–155.

    PubMed  CAS  Google Scholar 

  • Pereon Y, Navarro J, Hamilton M, Booth FW & Palade P. (1997a). Chronic stimulation differentially modulates expression of mRNA for dihydropyridine receptor isoforms in rat fast twitch skeletal muscle. Biochem Biophys Res Commun 235, 217–222.

    CAS  Google Scholar 

  • Pereon Y, Sorrentino V, Dettbarn C, Noireaud J & Palade P. (1997b). Dihydropyridine receptor and ryanodine receptor gene expression in long-term denervated rat muscles. Biochem Biophys Res Commun 240, 612–617.

    CAS  Google Scholar 

  • Perez-Reyes E, Kim HS, Lacerda AE, Horne W, Wei XY, Rampe D, Campbell KP, Brown AM & Birnbaumer L. (1989). Induction of calcium currents by the expression of the alpha 1-subunit of the dihydropyridine receptor from skeletal muscle. Nature 340, 233–236.

    PubMed  CAS  Google Scholar 

  • Pragnell M, De Waard M, Mori Y, Tanabe T, Snutch TP & Campbell KP. (1994). Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature 368, 67–70.

    PubMed  CAS  Google Scholar 

  • Protasi F, Franzini-Armstrong C & Allen PD. (1998). Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle. J Cell Biol 140, 831–842.

    PubMed  CAS  Google Scholar 

  • Protasi F, Franzini-Armstrong C & Flucher BE. (1997). Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells. J Cell Biol 137, 859–870.

    PubMed  CAS  Google Scholar 

  • Protasi F, Sun XH & Franzini-Armstrong C. (1996). Formation and maturation of the calcium release apparatus in developing and adult avian myocardium. Dev Biol 173, 265–278.

    PubMed  CAS  Google Scholar 

  • Protasi F, Takekura H, Wang Y, Chen SR, Meissner G, Allen PD & Franzini-Armstrong C. (2000). RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys J 79, 2494–2508.

    PubMed  CAS  Google Scholar 

  • Pu SF, Zhuang HX, Marsh DJ & Ishii DN. (1999). Insulin-like growth factor-II increases and IGF is required for postnatal rat spinal motoneuron survival following sciatic nerve axotomy. J Neurosci Res 55, 9–16.

    PubMed  CAS  Google Scholar 

  • Rabinovsky ED, Gelir E, Gelir S, Lui H, Kattash M, DeMayo FJ, Shenaq SM & Schwartz RJ. (2003). Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. Faseb J 17, 53–55.

    PubMed  CAS  Google Scholar 

  • Ray A, Kyselovic J, Leddy JJ, Wigle JT, Jasmin BJ & Tuana BS. (1995). Regulation of dihydropyridine and ryanodine receptor gene expression in skeletal muscle. Role of nerve, protein kinase C, and cAMP pathways. J Biol Chem 270, 25837–25844.

    PubMed  CAS  Google Scholar 

  • Renganathan M, Messi ML & Delbono O. (1997a). Dihydropyridine receptor-ryanodine receptor uncoupling in aged skeletal muscle. J Membr Biol 157, 247–253.

    CAS  Google Scholar 

  • Renganathan M, Messi ML & Delbono O. (1998). Overexpression of IGF-1 exclusively in skeletal muscle prevents age-related decline in the number of dihydropyridine receptors. J Biol Chem 273, 28845–28851.

    PubMed  CAS  Google Scholar 

  • Renganathan M, Messi ML, Schwartz R & Delbono O. (1997b). Overexpression of hIGF-1 exclusively in skeletal muscle increases the number of dihydropyridine receptors in adult transgenic mice. FEBS Lett 417, 13–16.

    CAS  Google Scholar 

  • Rios E & Brum G. (1987). Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325, 717–720.

    PubMed  CAS  Google Scholar 

  • Rodney GG, Krol J, Williams B, Beckingham K & Hamilton SL. (2001). The carboxy-terminal calcium binding sites of calmodulin control calmodulin’s switch from an activator to an inhibitor of RYR1. Biochemistry 40, 12430–12435.

    PubMed  CAS  Google Scholar 

  • Rodney GG, Williams BY, Strasburg GM, Beckingham K & Hamilton SL. (2000). Regulation of RYR1 activity by Ca(2+) and calmodulin. Biochemistry 39, 7807–7812.

    PubMed  CAS  Google Scholar 

  • Rotman EI, De Jongh KS, Florio V, Lai Y & Catterall WA. (1992). Specific phosphorylation of a COOH-terminal site on the full-length form of the alpha 1 subunit of the skeletal muscle calcium channel by cAMP-dependent protein kinase. J Biol Chem 267, 16100–16105.

    PubMed  CAS  Google Scholar 

  • Ryan M, Carlson BM & Ohlendieck K. (2000). Oligomeric status of the dihydropyridine receptor in aged skeletal muscle. Mol Cell Biol Res Commun 4, 224–229.

    PubMed  CAS  Google Scholar 

  • Saborido A, Molano F, Moro G & Megias A. (1995). Regulation of dihydropyridine receptor levels in skeletal and cardiac muscle by exercise training. Pflugers Arch 429, 364–369.

    PubMed  CAS  Google Scholar 

  • Schinder AF & Poo M. (2000). The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 23, 639–645.

    PubMed  CAS  Google Scholar 

  • Schneider MF & Chandler WK. (1973). Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature 242, 244–246.

    PubMed  CAS  Google Scholar 

  • Schreiber SL. (1991). Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251, 283–287.

    PubMed  CAS  Google Scholar 

  • Schreyer DJ & Skene JH. (1993). Injury-associated induction of GAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons. J Neurobiol 24, 959–970.

    PubMed  CAS  Google Scholar 

  • Schulte LM, Navarro J & Kandarian SC. (1993). Regulation of sarcoplasmic reticulum calcium pump gene expression by hindlimb unweighting. Am J Physiol 264, C1308–1315.

    PubMed  CAS  Google Scholar 

  • Sculptoreanu A, Rotman E, Takahashi M, Scheuer T & Catterall WA. (1993). Voltage-dependent potentiation of the activity of cardiac L-type calcium channel alpha 1 subunits due to phosphorylation by cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 90, 10135–10139.

    PubMed  CAS  Google Scholar 

  • Sencer S, Papineni RV, Halling DB, Pate P, Krol J, Zhang JZ & Hamilton SL. (2001). Coupling of RYR1 and L-type calcium channels via calmodulin binding domains. J Biol Chem 276, 38237–38241.

    PubMed  CAS  Google Scholar 

  • Serysheva, II, Orlova EV, Chiu W, Sherman MB, Hamilton SL & van Heel M. (1995). Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel. Nat Struct Biol 2, 18–24.

    PubMed  CAS  Google Scholar 

  • Serysheva, II, Schatz M, van Heel M, Chiu W & Hamilton SL. (1999). Structure of the skeletal muscle calcium release channel activated with Ca2+ and AMP-PCP. Biophys J 77, 1936–1944.

    PubMed  CAS  Google Scholar 

  • Sheridan DC, Carbonneau L, Ahern CA, Nataraj P & Coronado R. (2003a). Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes. Biophys J 85, 3739–3757.

    CAS  Google Scholar 

  • Sheridan DC, Cheng W, Ahern CA, Mortenson L, Alsammarae D, Vallejo P & Coronado R. (2003b). Truncation of the carboxyl terminus of the dihydropyridine receptor beta1a subunit promotes Ca2+ dependent excitation-contraction coupling in skeletal myotubes. Biophys J 84, 220–237.

    CAS  Google Scholar 

  • Shiotani A, O’Malley BW, Jr., Coleman ME, Alila HW & Flint PW. (1998). Reinnervation of motor endplates and increased muscle fiber size after human insulin-like growth factor I gene transfer into the paralyzed larynx. Hum Gene Ther 9, 2039–2047.

    PubMed  CAS  Google Scholar 

  • Shistik E, Ivanina T, Puri T, Hosey M & Dascal N. (1995). Ca2+ current enhancement by alpha 2/delta and beta subunits in Xenopus oocytes: contribution of changes in channel gating and alpha 1 protein level. J Physiol 489 (Pt 1), 55–62.

    PubMed  CAS  Google Scholar 

  • Skene JH, Jacobson RD, Snipes GJ, McGuire CB, Norden JJ & Freeman JA. (1986). A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science 233, 783–786.

    PubMed  CAS  Google Scholar 

  • Smith JS, Rousseau E & Meissner G. (1989). Calmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle. Circ Res 64, 352–359.

    PubMed  CAS  Google Scholar 

  • Sonnleitner A, Fleischer S & Schindler H. (1997). Gating of the skeletal calcium release channel by ATP is inhibited by protein phosphatase 1 but not by Mg2+. Cell Calcium 21, 283–290.

    PubMed  CAS  Google Scholar 

  • Stokes DL & Wagenknecht T. (2000). Calcium transport across the sarcoplasmic reticulum: structure and function of Ca2+-ATPase and the ryanodine receptor. Eur J Biochem 267, 5274–5279.

    PubMed  CAS  Google Scholar 

  • Strube C, Beurg M, Powers PA, Gregg RG & Coronado R. (1996). Reduced Ca2+ current, charge movement, and absence of Ca2+ transients in skeletal muscle deficient in dihydropyridine receptor beta 1 subunit. Biophys J 71, 2531–2543.

    PubMed  CAS  Google Scholar 

  • Sun XH, Protasi F, Takahashi M, Takeshima H, Ferguson DG & Franzini-Armstrong C. (1995). Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. J Cell Biol 129, 659–671.

    PubMed  CAS  Google Scholar 

  • Szegedi C, Sarkozi S, Herzog A, Jona I & Varsanyi M. (1999). Calsequestrin: more than ‘only’ a luminal Ca2+ buffer inside the sarcoplasmic reticulum. Biochem J 337 (Pt 1), 19–22.

    PubMed  CAS  Google Scholar 

  • Takekura H, Nishi M, Noda T, Takeshima H & Franzini-Armstrong C. (1995a). Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor. Proc Natl Acad Sci U S A 92, 3381–3385.

    CAS  Google Scholar 

  • Takekura H, Takeshima H, Nishimura S, Takahashi M, Tanabe T, Flockerzi V, Hofmann F & Franzini-Armstrong C. (1995b). Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling. J Muscle Res Cell Motil 16, 465–480.

    CAS  Google Scholar 

  • Takekura H, Tamaki H, Nishizawa T & Kasuga N. (2003). Plasticity of the transverse tubules following denervation and subsequent reinnervation in rat slow and fast muscle fibres. J Muscle Res Cell Motil 24, 439–451.

    PubMed  Google Scholar 

  • Takeshima H. (1993). Primary structure and expression from cDNAs of the ryanodine receptor. Ann N Y Acad Sci 707, 165–177.

    PubMed  CAS  Google Scholar 

  • Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T & et al. (1989). Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339, 439–445.

    PubMed  CAS  Google Scholar 

  • Tanabe T, Beam KG, Adams BA, Niidome T & Numa S. (1990a). Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346, 567–569.

    CAS  Google Scholar 

  • Tanabe T, Beam KG, Powell JA & Numa S. (1988). Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336, 134–139.

    PubMed  CAS  Google Scholar 

  • Tanabe T, Mikami A, Numa S & Beam KG. (1990b). Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature 344, 451–453.

    CAS  Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T & Numa S. (1987). Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313–318.

    PubMed  CAS  Google Scholar 

  • Tarroni P, Rossi D, Conti A & Sorrentino V. (1997). Expression of the ryanodine receptor type 3 calcium release channel during development and differentiation of mammalian skeletal muscle cells. J Biol Chem 272, 19808–19813.

    PubMed  CAS  Google Scholar 

  • Thomason DB, Herrick RE, Surdyka D & Baldwin KM. (1987). Time course of soleus muscle myosin expression during hindlimb suspension and recovery. J Appl Physiol 63, 130–137.

    PubMed  CAS  Google Scholar 

  • Thompson LV & Brown M. (1999). Age-related changes in contractile properties of single skeletal fibers from the soleus muscle. J Appl Physiol 86, 881–886.

    PubMed  CAS  Google Scholar 

  • Timerman AP, Ogunbumni E, Freund E, Wiederrecht G, Marks AR & Fleischer S. (1993). The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem 268, 22992–22999.

    PubMed  CAS  Google Scholar 

  • Tripathy A, Xu L, Mann G & Meissner G. (1995). Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor). Biophys J 69, 106–119.

    PubMed  CAS  Google Scholar 

  • Urbanchek MG, Picken EB, Kalliainen LK & Kuzon WM, Jr. (2001). Specific force deficit in skeletal muscles of old rats is partially explained by the existence of denervated muscle fibers. J Gerontol A Biol Sci Med Sci 56, B191–197.

    PubMed  CAS  Google Scholar 

  • Ursu D, Sebille S, Dietze B, Freise D, Flockerzi V & Melzer W. (2001). Excitation-contraction coupling in skeletal muscle of a mouse lacking the dihydropyridine receptor subunit gamma1. J Physiol 533, 367–377.

    PubMed  CAS  Google Scholar 

  • Verdu E, Ceballos D, Vilches JJ & Navarro X. (2000). Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst 5, 191–208.

    PubMed  CAS  Google Scholar 

  • Vergani L, Di Giulio AM, Losa M, Rossoni G, Muller EE & Gorio A. (1998). Systemic administration of insulin-like growth factor decreases motor neuron cell death and promotes muscle reinnervation. J Neurosci Res 54, 840–847.

    PubMed  CAS  Google Scholar 

  • Wagenknecht T, Radermacher M, Grassucci R, Berkowitz J, Xin HB & Fleischer S. (1997). Locations of calmodulin and FK506-binding protein on the three-dimensional architecture of the skeletal muscle ryanodine receptor. J Biol Chem 272, 32463–32471.

    PubMed  CAS  Google Scholar 

  • Wang S, Trumble WR, Liao H, Wesson CR, Dunker AK & Kang CH. (1998a). Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Biol 5, 476–483.

    CAS  Google Scholar 

  • Wang X, Berninger B & Poo M. (1998b). Localized synaptic actions of neurotrophin-4. J Neurosci 18, 4985–4992.

    CAS  Google Scholar 

  • Wang ZM, Messi ML & Delbono O. (2000). L-Type Ca(2+) channel charge movement and intracellular Ca(2+) in skeletal muscle fibers from aging mice. Biophys J 78, 1947–1954.

    PubMed  CAS  Google Scholar 

  • Wang ZM, Messi ML & Delbono O. (2002). Sustained overexpression of IGF-1 prevents age-dependent decrease in charge movement and intracellular Ca(2+) in mouse skeletal muscle. Biophys J 82, 1338–1344.

    PubMed  CAS  Google Scholar 

  • Wang ZM, Messi ML, Renganathan M & Delbono O. (1999). Insulin-like growth factor-1 enhances rat skeletal muscle charge movement and L-type Ca2+ channel gene expression. J Physiol 516 (Pt 2), 331–341.

    PubMed  CAS  Google Scholar 

  • Yano K & Zarain-Herzberg A. (1994). Sarcoplasmic reticulum calsequestrins: structural and functional properties. Mol Cell Biochem 135, 61–70.

    PubMed  CAS  Google Scholar 

  • Yin CC & Lai FA. (2000). Intrinsic lattice formation by the ryanodine receptor calcium-release channel. Nat Cell Biol 2, 669–671.

    PubMed  CAS  Google Scholar 

  • Zhang C, Goto N, Suzuki M & Ke M. (1996). Age-related reductions in number and size of anterior horn cells at C6 level of the human spinal cord. Okajimas Folia Anat Jpn 73, 171–177.

    PubMed  CAS  Google Scholar 

  • Zhang C, Goto N & Zhou M. (1995). Morphometric analyses and aging process of nerve fibers in the human spinal posterior funiculus. Okajimas Folia Anat Jpn 72, 259–264.

    PubMed  CAS  Google Scholar 

  • Zhang L, Kelley J, Schmeisser G, Kobayashi YM & Jones LR. (1997). Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 272, 23389–23397.

    PubMed  CAS  Google Scholar 

  • Zheng Z, Wang ZM & Delbono O. (2002). Insulin-like growth factor-1 increases skeletal muscle dihydropyridine receptor alpha 1S transcriptional activity by acting on the cAMP-response element-binding protein element of the promoter region. J Biol Chem 277, 50535–50542.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Payne, A.M., Delbono, O. (2006). Plasticity of Excitation-Contraction Coupling in Skeletal Muscle. In: Bottinelli, R., Reggiani, C. (eds) Skeletal Muscle Plasticity in Health and Disease. Advances in Muscle Research, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5177-8_7

Download citation

Publish with us

Policies and ethics