Skip to main content

Activity Dependent Control of the Transcriptional regulators NFAT and HDAC in adult skeletal muscle fibres

  • Chapter
Skeletal Muscle Plasticity in Health and Disease

Part of the book series: Advances in Muscle Research ((ADMR,volume 2))

  • 713 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, and Barco A (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron. 42, 947–959.

    Article  PubMed  CAS  Google Scholar 

  • Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM, Richardson JA, Hill JA, and Olson EN (2002). Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci USA. 99, 907–912.

    Article  PubMed  CAS  Google Scholar 

  • Bare DJ, Kettlun CS, Liang M, Bers DM, and Mignery GA (2005). Cardiac type 2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem. 280, 15912–15920.

    Article  PubMed  CAS  Google Scholar 

  • Beals, CR, Clipstone NA, Ho SN, and Crabtree GR (1997). Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev. 11, 824–834.

    PubMed  CAS  Google Scholar 

  • Berger I, Bieniossek C, Schaffitzel C, Hassler M, Santelli E, and Richmond TJ (2003). Direct interaction of Ca2+/calmodulin inhibits histone deacetylase 5 repressor core binding to myocyte enhancer factor 2. J Biol Chem. 278, 17625–17635.

    Article  PubMed  CAS  Google Scholar 

  • Bertos NR, Wang AH, and Yang X (2001). Class II histone deacetylases: Structure, function, and regulation. Biochem Cell Biol. 79, 243–252.

    Article  PubMed  CAS  Google Scholar 

  • Calvo, S., P. Venepally, J. Cheng, and A. Buonanno. 1999. Fiber-type-specific transcription of the troponin I slow gene is regulated by multiple elements. Mol. Cell. Biol. 19, 515–525.

    PubMed  CAS  Google Scholar 

  • Carroll SL, Klein MG, and Schneider MF (1995). Calcium transients in intact rat skeletal muscle fibers in agarose gel. Am J Physiol. 269, C28–C34.

    PubMed  CAS  Google Scholar 

  • Chawla, S., P. Vanhoutte, F. J. Arnold, C. L. Huang, and H. Bading.2003. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem. 85, 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, and Williams RS (1998). A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12, 2499–2509.

    PubMed  CAS  Google Scholar 

  • Crabtree GR (1999). Generic signals and specific outcomes: signaling through Ca2 + , calcineurin, and NF-AT. Cell 96, 611–614.

    Article  PubMed  CAS  Google Scholar 

  • Downes M, Ordentlich P, Kao HY, Alvarez JGA, and Evans RM (2000). Identification of a nuclear domain with deactylase activity. Proc Natl Acad Sci USA. 97, 10330–10335.

    Article  PubMed  CAS  Google Scholar 

  • Faulkner G, Pallavicini A, Comelli A, Salamon M, Bortoletto G, Ievolella C, Trevisan S, Kojic’ S, Dalla Vecchia F, Laveder P, Valle G, and Lanfranchi G (2000). FATZ, a filamin-, actinin-, and telethonin-binding protein of the Z-disc of skeletal muscle. J Biol Chem. 275, 41234–41242.

    Article  PubMed  CAS  Google Scholar 

  • Fischle, W, Kiermer V, Dequiedt F, and Verdin E (2001). The emerging role of class II histone deacetylases. Biochem Cell Biol. 79, 337–348.

    Article  PubMed  CAS  Google Scholar 

  • Frey N, Richardson JA, and Olson EN (2000). Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci U S A. 97, 14632–14637.

    Article  PubMed  CAS  Google Scholar 

  • Frey N, and Olson EN (2002). Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins. J Biol Chem. 277, 13998–134004.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cozar, F.J., H. Okamura, J. F. Aramburu, K. T. Shaw, L. Pelletier, R. Showalter, E. Villafranca, A. Rao.1998. Two-site interaction of nuclear factor of activated T cells with activated calcineurin. J. Biol. Chem. 273, 23877–23883.

    Article  PubMed  CAS  Google Scholar 

  • Grozinger CM, and Schreiber SL (2000). Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci USA. 97, 7835–7840.

    Article  PubMed  CAS  Google Scholar 

  • Hendzel MJ, Kruhlak MJ, MacLean NA, Boisvert F, Lever MA, and Bazett-Jones DP (2001). Compartmentalization of regulatory proteins in the cell nucleus. J Steroid Biochem Mol Biol. 76, 9–21.

    Article  PubMed  CAS  Google Scholar 

  • Hoey T, Sun YL, Williamson K, and Xu X (1995). Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity 2, 461–472.

    Article  PubMed  CAS  Google Scholar 

  • Hollingworth S, Zhao M, and Baylor SM (1996). The amplitude and time course of the myoplasmic free [Ca2+] transient in fast-twitch fibers of mouse muscle. J Gen Physiol. 108, 455–469.

    Article  PubMed  CAS  Google Scholar 

  • Kiselyov KI, Shin DM, Wang Y, Pessah IN, Allen PD, and Muallem S (2000). Gating of store-operated channels by conformational coupling to ryanodine receptors. Mol Cell 6, 421–431.

    Article  PubMed  CAS  Google Scholar 

  • Klein MG, Kovacs L, Simon BJ, Schneider MF (1991). Decline of myoplasmic Ca2+, recovery of calcium release and sarcoplasmic Ca2+ pump properties in frog skeletal muscle. J Physiol. 441, 639–671.

    PubMed  CAS  Google Scholar 

  • Korzus E, Rosenfeld MG, and Mayford M (2004). CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron. 42, 961–972.

    Article  PubMed  CAS  Google Scholar 

  • Kubis HP, Haller EA, Wetzel P, and Gros G (1997). Adult fast myosin pattern and Ca2+-induced slow myosin pattern in primary skeletal muscle culture. Proc Natl Acad Sci USA. 94, 4205–4210.

    Article  PubMed  CAS  Google Scholar 

  • Kubis HP, Scheibe RJ, Meissner JD, Hornung G, and Gros G (2002). Fast-to-slow transformation and nuclear import/export kinetics of the transcription factor NFATc1 during electrostimulation of rabbit muscle cells in culture. J Physiol. 541, 835–847.

    Article  PubMed  CAS  Google Scholar 

  • Kubis HP, Hanke N, Scheibe RJ, Meissner JD, Gros G (2003). Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture. Am J Physiol Cell Physiol. 285, C56–C63.

    PubMed  CAS  Google Scholar 

  • Kurebayashi N, and Ogawa Y (2001). Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J Physiol. 533, 185–199.

    Article  PubMed  CAS  Google Scholar 

  • Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, and Sweatt JD (2004). Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem. 279, 40545–40559.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Cseresnyes Z, Randall WR, and Schneider MF (2001). Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. J Cell Biol. 155, 27–39.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Randall WR, and Schneider MF (2005a). Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle. J Cell Biol. 168, 887–897.

    Article  CAS  Google Scholar 

  • Liu Y, and Schneider MF (1998). Fibre type-specific gene expression activated by chronic electrical stimulation of adult mouse skeletal muscle fibres in culture. J Physiol. 512, 337–344.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Shen T, Randall WR, and Schneider MF (2005b). Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil. 26, 13–21.

    Article  CAS  Google Scholar 

  • Macian F, Lopez-Rodriguez C, and Rao A (2001). Partners in transcription: NFAT and AP-1. Oncogene. 20, 2476–2489.

    Article  PubMed  CAS  Google Scholar 

  • Mateescu B, England P, Halgand F, Yaniv M, and Muchardt C (2004). Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep. 5, 490–496.

    Article  PubMed  CAS  Google Scholar 

  • McCullagh KJ, Calabria E, Pallafacchina G, Ciciliot S, Serrano AL, Argentini C, Kalhovde JM, Lomo T, and Schiaffino S (2004). NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc Natl Acad Sci U S A. 101, 10590–10595.

    Article  PubMed  CAS  Google Scholar 

  • McKinsey, T.A., C. L. Zhang, J. Lu, and E. N. Olson. (2000a). Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 408, 106–111.

    Article  CAS  Google Scholar 

  • McKinsey, T. A., C. L. Zhang, and E. N. Olson. (2000b). Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacatylase 5. Proc. Natl. Acad. Sci.USA 97, 14400–14405.

    Article  CAS  Google Scholar 

  • McKinsey TA, Zhang CL, and Olson EN (2001). Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev. 11, 497–504.

    Article  PubMed  CAS  Google Scholar 

  • Mejat A, Ramond F, Bassel-Duby R, Khochbin S, Olson EN, and Schaeffer L (2005). Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci. 8, 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, and Kouzarides T (1999). HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 18, 5099–5107.

    Article  PubMed  CAS  Google Scholar 

  • Miska, E. A., E. Langley, D. Wolf, C. Karlsson, J. Pines, and T. Kouzarides. 2001. Differential localization of HDAC4 orchestrates muscle differentiation. Nucleic Acids Res. 29, 3439–3447.

    Article  PubMed  CAS  Google Scholar 

  • Misteli, T. Protein dynamics: implications for nuclear architecture and gene expression.2001. Science. 291, 843–847.

    Google Scholar 

  • Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, and Olson EN (2000). Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem. 275, 4545–4548.

    Article  PubMed  CAS  Google Scholar 

  • Neal JW, and Clipstone NA (2001). Glycogen synthase kinase-3 inhibits the DNA binding activity of NFATc. J Biol Chem. 276, 3666–3673.

    Article  PubMed  CAS  Google Scholar 

  • Nowak SJ, and Corces VG (2004). Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214–220.

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Yang D, Nagaraj RY, Nosek TA, Nishi M, Takeshima H, Cheng H, and Ma J (2002). Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol. 4, 379–383.

    Article  PubMed  CAS  Google Scholar 

  • Parsons SA, Wilkins BJ, Bueno OF, and Molkentin JD (2003). Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol Cell Biol. 23, 4331–4343.

    Article  PubMed  CAS  Google Scholar 

  • Payne AM, Zheng Z, Gonzalez E, Wang ZM, Messi ML, Delbono O (2004). External Ca(2+).-dependent excitation–contraction coupling in a population of ageing mouse skeletal muscle fibres. J Physiol. 560(Pt 1), 137–155.

    Article  PubMed  CAS  Google Scholar 

  • Powell JA, Carrasco MA, Adams DS, Drouet B, Rios J, Muller M, Estrada M, and Jaimovich E (2001). IP(3) receptor function and localization in myotubes: an unexplored Ca2+ signaling pathway in skeletal muscle. J Cell Sci. 114, 3673–3683.

    PubMed  CAS  Google Scholar 

  • Rosenberg P, Hawkins A, Stiber J, Shelton JM, Hutcheson K, Bassel-Duby R, Shin DM, Yan Z, and Williams RS (2004). TRPC3 channels confer cellular memory of recent neuromuscular activity. Proc Natl Acad Sci U S A. 101, 9387–9392.

    Article  PubMed  CAS  Google Scholar 

  • Salazar C and Hofer T (2003). Allosteric regulation of the transcription factor NFAT1 by multiple phosphorylation sites: a mathematical analysis. J Mol Biol. 327, 31–45.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan CM, Heist EK, Beals CR, Crabtree GR, and Gardner P (2002). Protein kinase A negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J Biol Chem. 277, 48664–48676.

    Article  PubMed  CAS  Google Scholar 

  • Spangenburg EE, Williams JH, Roy RR, and Talmadge RJ (2001). Skeletal muscle calcineurin: influence of phenotype adaptation and atrophy. Am J Physiol Regul Integr Comp Physiol. 280, R1256–R1260.

    PubMed  CAS  Google Scholar 

  • Sparrow DB, Miska EA, Langley E, Reynaud-Deonauth S, Kotecha S, Towers N, Spohr G, Kouzarides T, Mohun TJ (1999). MEF-2 function is modified by a novel co-repressor, MITR. EMBO J. 18, 5085–5098.

    Article  PubMed  CAS  Google Scholar 

  • Spector, D.L., X. D. Fu, and T. Maniatis. 1991. Associations between distinct pre-mRNA splicing components and the cell nucleus. EMBO J. 10, 3467–3481.

    PubMed  CAS  Google Scholar 

  • Swoap, S.J., R. B. Hunter, E. J. Stevenson, H. M. Felton, N. V Kansagra, J. M. Lang, K. A. Esser, and S. C. Kandarian. 2000. The calcineurin-NFAT pathway and muscle fiber-type gene expression. Am. J. Physiol. 279, C915–C924.

    CAS  Google Scholar 

  • Tomida T, Hirose K, Takizawa A, Shibasaki F, Iino M (2003). NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation. EMBO J. 22, 3825–3932.

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H, and Allen DG (1994). Relaxation, [Ca2+]i and [Mg2+]i during prolonged tetanic stimulation of intact, single fibres from mouse skeletal muscle. J Physiol. 480, 31–43.

    PubMed  CAS  Google Scholar 

  • Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, Simard AR, Michel RN, Bassel-Duby R, Olson EN, and Williams RS (2000). MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19, 1963–1973.

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya F J, Shelton,JM, Hutcheson K A, DiMaio JM, Olson EN, Bassel-Duby R, and Williams RS (2001). Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J. 20, 6414–6423.

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Bossuyt J, Zhang T, McKinsey T, Brown JH, Olson EN, and Bers DM (2004). Excitation-transcription coupling in adult myocytes: local InSP3-dependent perinuclear signaling activates HDAC nuclear export. Circulation 110, III–285.

    Google Scholar 

  • Youn HD, Grozinger CM, and Liu JO (2000). Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J Biol Chem. 275, 22563–22567.

    Article  PubMed  CAS  Google Scholar 

  • Zhang CL, McKinsey TA, and Olson (2001). The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc Natl Acad Sci U S A. 98, 7354–7359.

    Article  PubMed  CAS  Google Scholar 

  • Zimber A, Nguyen QD, Gespach C (2004). Nuclear bodies and compartments: functional roles and cellular signalling in health and disease. Cell Signal. 16, 1085–1104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Liu, Y., Shen, T., Randall, W.R., Schneider, M.F. (2006). Activity Dependent Control of the Transcriptional regulators NFAT and HDAC in adult skeletal muscle fibres. In: Bottinelli, R., Reggiani, C. (eds) Skeletal Muscle Plasticity in Health and Disease. Advances in Muscle Research, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5177-8_5

Download citation

Publish with us

Policies and ethics