Skip to main content

Signaling Pathways Controlling Muscle Fiber Size and Type In Response To Nerve Activity

  • Chapter
Skeletal Muscle Plasticity in Health and Disease

Part of the book series: Advances in Muscle Research ((ADMR,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott KL, Friday BB, Thaloor D, Murphy TJ & Pavlath GK. (1998). Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol Biol Cell 9, 2905–2916.

    PubMed  CAS  Google Scholar 

  • Aramburu J, Yaffe MB, Lopez-Rodriguez C, Cantley LC, Hogan PG & Rao A. (1999). Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285, 2129–2133.

    PubMed  CAS  Google Scholar 

  • Awede BL, Thissen JP & Lebacq J. (2002). Role of IGF-I and IGFBPs in the changes of mass and phenotype induced in rat soleus muscle by clenbuterol. Am J Physiol Endocrinol Metab 282, E31–37.

    PubMed  CAS  Google Scholar 

  • Barton ER, Morris L, Musaro A, Rosenthal N & Sweeney HL. (2002). Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157, 137–148.

    PubMed  CAS  Google Scholar 

  • Bertrand A, Ngo-Muller V, Hentzen D, Concordet JP, Daegelen D & Tuil D. (2003). Muscle electrotransfer as a tool for studying muscle fiber-specific and nerve-dependent activity of promoters. Am J Physiol Cell Physiol 285, C1071–1081.

    PubMed  CAS  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD & Glass DJ. (2001a). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708.

    CAS  Google Scholar 

  • Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ & Yancopoulos GD. (2001b). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3, 1014–1019.

    CAS  Google Scholar 

  • Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS & Khurana TS. (2002). Functional improvement of dystrophic muscle by myostatin blockade. Nature 420, 418–421.

    PubMed  CAS  Google Scholar 

  • Bortoluzzi S, Scannapieco P, Cestaro A, Danieli GA & Schiaffino S. (2006). Computational reconstruction of the human skeletal muscle secretome. PROTEINS: Structure, Function, and Bioinformatics, 62, 776–792.

    CAS  Google Scholar 

  • Buller AJ, Eccles JC & Eccles RM. (1960). Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol 150, 417–439.

    PubMed  CAS  Google Scholar 

  • Cai D, Frantz JD, Tawa NE, Jr., Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ & Shoelson SE. (2004). IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119, 285–298.

    PubMed  CAS  Google Scholar 

  • Chakkalakal JV, Harrison MA, Carbonetto S, Chin E, Michel RN & Jasmin BJ. (2004). Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice. Hum Mol Genet. 13, 379–388.

    PubMed  CAS  Google Scholar 

  • Chakkalakal JV, Stocksley MA, Harrison MA, Angus LM, Deschenes-Furry J, St-Pierre S, Megeney LA, Chin ER, Michel RN & Jasmin BJ. (2003). Expression of utrophin A mRNA correlates with the oxidative capacity of skeletal muscle fiber types and is regulated by calcineurin/NFAT signaling. Proc Natl Acad Sci U S A 100, 7791–7796.

    Google Scholar 

  • Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R & Williams RS. (1998). A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12, 2499–2509.

    PubMed  CAS  Google Scholar 

  • Coffey VG, Shield A, Canny BJ, Carey KA, Cameron-Smith D & Hawley JA. (2006). Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab 290, E849–855.

    PubMed  CAS  Google Scholar 

  • Crabtree GR & Olson EN. (2002). NFAT signaling. Choreographing the social lives of cells. Cell 109 Suppl, S67–79.

    PubMed  CAS  Google Scholar 

  • DeNardi C, Ausoni S, Moretti P, Gorza L, Velleca M, Buckingham M & Schiaffino S. (1993). Type 2X-myosin heavy chain is coded by a muscle fiber type-specific and developmentally regulated gene. J Cell Biol 123, 823–835.

    PubMed  CAS  Google Scholar 

  • DiMario JX. (2001). Protein kinase C signaling controls skeletal muscle fiber types. Exp Cell Res 263, 23–32.

    PubMed  CAS  Google Scholar 

  • Donnelly R, Reed MJ, Azhar S & Reaven GM. (1994). Expression of the major isoenzyme of protein kinase-C in skeletal muscle, nPKC theta, varies with muscle type and in response to fructose-induced insulin resistance. Endocrinology 135, 2369–2374.

    PubMed  CAS  Google Scholar 

  • Eyre H, Kahn R, Robertson RM, Clark NG, Doyle C, Hong Y, Gansler T, Glynn T, Smith RA, Taubert K & Thun MJ. (2004). Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Circulation 109, 3244–3255.

    PubMed  Google Scholar 

  • Frey N, Barrientos T, Shelton JM, Frank D, Rutten H, Gehring D, Kuhn C, Lutz M, Rothermel B, Bassel-Duby R, Richardson JA, Katus HA, Hill JA & Olson EN. (2004). Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat Med 10, 1336–1343.

    PubMed  CAS  Google Scholar 

  • Gabellini D, D’Antona G, Moggio M, Prelle A, Zecca C, Adami R, Angeletti B, Ciscato P, Pellegrino MA, Bottinelli R, Green MR & Tupler R. (2005). Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1. Nature.

    Google Scholar 

  • Glass DJ. (2003). Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5, 87–90.

    PubMed  CAS  Google Scholar 

  • Goldspink G. (1999). Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat 194, 323–334.

    PubMed  CAS  Google Scholar 

  • Gomes MD, Lecker SH, Jagoe RT, Navon A & Goldberg AL. (2001). Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98, 14440–14445.

    PubMed  CAS  Google Scholar 

  • Grater F, Shen J, Jiang H, Gautel M & Grubmuller H. (2005). Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations. Biophys J 88, 790–804.

    PubMed  Google Scholar 

  • Handschin C, Rhee J, Lin J, Tarr PT & Spiegelman BM. (2003). An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 100, 7111–7116.

    PubMed  CAS  Google Scholar 

  • Hay N & Sonenberg N. (2004). Upstream and downstream of mTOR. Genes Dev 18, 1926–1945.

    PubMed  CAS  Google Scholar 

  • Ho RC, Hirshman MF, Li Y, Cai D, Farmer JR, Aschenbach WG, Witczak CA, Shoelson SE & Goodyear LJ. (2005). Regulation of IkappaB kinase and NF-kappaB in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol 289, C794–801.

    PubMed  CAS  Google Scholar 

  • Hoey T, Sun YL, Williamson K & Xu X. (1995). Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity 2, 461–472.

    PubMed  CAS  Google Scholar 

  • Hogan PG, Chen L, Nardone J & Rao A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17, 2205–2232.

    PubMed  CAS  Google Scholar 

  • Horsley V, Friday BB, Matteson S, Kegley KM, Gephart J & Pavlath GK. (2001). Regulation of the growth of multinucleated muscle cells by an NFATC2- dependent pathway. J Cell Biol 153, 329–338.

    PubMed  CAS  Google Scholar 

  • Horsley V, Jansen KM, Mills ST & Pavlath GK. (2003). IL-4 Acts as a Myoblast Recruitment Factor during Mammalian Muscle Growth. Cell 113, 483–494.

    PubMed  CAS  Google Scholar 

  • Hughes SM, Chi MM, Lowry OH & Gundersen K. (1999). Myogenin induces a shift of enzyme activity from glycolytic to oxidative metabolism in muscles of transgenic mice. J Cell Biol 145, 633–642.

    PubMed  CAS  Google Scholar 

  • Hunter RB & Kandarian SC. (2004). Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 114, 1504–1511.

    PubMed  CAS  Google Scholar 

  • Jerkovic R, Argentini C, Serrano-Sanchez A, Cordonnier C & Schiaffino S. (1997). Early myosin switching induced by nerve activity in regenerating slow skeletal muscle. Cell Struct Funct 22, 147–153.

    PubMed  CAS  Google Scholar 

  • Ji LL, Gomez-Cabrera MC, Steinhafel N & Vina J. (2004). Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. Faseb J 18, 1499–1506.

    PubMed  CAS  Google Scholar 

  • Jorgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y, Schjerling P, Vaulont S, Neufer PD, Richter EA & Pilegaard H. (2005). Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. Faseb J 19, 1146–1148.

    PubMed  Google Scholar 

  • Kahn BB, Alquier T, Carling D & Hardie DG. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1, 15–25.

    PubMed  CAS  Google Scholar 

  • Kalhovde JM, Jerkovic R, Sefland I, Cordonnier C, Calabria E, Schiaffino S & Lomo T. (2005). ‘‘Fast’’ and ‘‘slow’’ muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells. J Physiol 562, 847–857.

    PubMed  CAS  Google Scholar 

  • Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I & Ezaki O. (2004). Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279, 41114–41123.

    PubMed  CAS  Google Scholar 

  • Kegley KM, Gephart J, Warren GL & Pavlath GK. (2001). Altered primary myogenesis in NFATC3(-/-) mice leads to decreased muscle size in the adult. Dev Biol 232, 115–126.

    PubMed  CAS  Google Scholar 

  • Khurana TS & Davies KE. (2003). Pharmacological strategies for muscular dystrophy. Nat Rev Drug Discov 2, 379–390.

    PubMed  CAS  Google Scholar 

  • Lai KM, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN, Economides AN, Yancopoulos GD & Glass DJ. (2004). Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24, 9295–9304.

    PubMed  CAS  Google Scholar 

  • Lange S, Ehler E & Gautel M. (2005a). From A to Z and back? Multicompartment proteins in the sarcomere. Trends Cell Biol. 16, 11–18.

    Google Scholar 

  • Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B & Gautel M. (2005b). The kinase domain of titin controls muscle gene expression and protein turnover. Science 308, 1599–1603.

    CAS  Google Scholar 

  • Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD & Glass DJ. (2005). Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 280, 2737–2744.

    PubMed  CAS  Google Scholar 

  • Lee SJ. (2004). Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20, 61–86.

    PubMed  CAS  Google Scholar 

  • Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF & Kelly DP. (2005). PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3, e101.

    PubMed  Google Scholar 

  • Li S, Czubryt MP, McAnally J, Bassel-Duby R, Richardson JA, Wiebel FF, Nordheim A & Olson EN. (2005). Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci U S A 102, 1082–1087.

    PubMed  CAS  Google Scholar 

  • Lømo T. (2003). Nerve-muscle interactions. In Clinical neurophysiology of disorders of muscle and the neuromuscular junction in adults and children IFSCN Handbook of Clinical Neurophysiology, ed. StÃ¥lberg E, pp. 47–65.Elsevier, Amstredam.

    Google Scholar 

  • Luquet S, Lopez-Soriano J, Holst D, Fredenrich A, Melki J, Rassoulzadegan M & Grimaldi PA. (2003). Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. Faseb J 17, 2299–2301.

    PubMed  CAS  Google Scholar 

  • McCall GE, Allen DL, Haddad F & Baldwin KM. (2003). Transcriptional regulation of IGF-I expression in skeletal muscle. Am J Physiol Cell Physiol 285, C831–839.

    PubMed  CAS  Google Scholar 

  • McCullagh KJ, Calabria E, Pallafacchina G, Ciciliot S, Serrano AL, Argentini C, Kalhovde JM, Lomo T & Schiaffino S. (2004). NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc Natl Acad Sci U S A.

    Google Scholar 

  • McKinsey TA, Zhang CL, Lu J & Olson EN. (2000a). Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111.

    CAS  Google Scholar 

  • McKinsey TA, Zhang CL & Olson EN. (2000b). Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 97, 14400–14405.

    CAS  Google Scholar 

  • Moens P, Baatsen PH & Marechal G. (1993). Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch. J Muscle Res Cell Motil 14, 446–451.

    PubMed  CAS  Google Scholar 

  • Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, Pypaert M & Shulman GI. (2005). Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115, 3587–3593.

    PubMed  CAS  Google Scholar 

  • Moss FP & Leblond CP. (1971). Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170, 421–435.

    PubMed  CAS  Google Scholar 

  • Murgia M, Serrano AL, Calabria E, Pallafacchina G, Lømo T & Schiaffino S. (2000). Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat Cell Biol 2, 142–147.

    PubMed  CAS  Google Scholar 

  • Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, H LS & Rosenthal N. (2001). Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27, 195–200.

    PubMed  CAS  Google Scholar 

  • Nader GA & Esser KA. (2001). Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 90, 1936–1942.

    PubMed  CAS  Google Scholar 

  • Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS & Olson EN. (2000). Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 275, 4545–4548.

    PubMed  CAS  Google Scholar 

  • Oh M, Rybkin, II, Copeland V, Czubryt MP, Shelton JM, van Rooij E, Richardson JA, Hill JA, De Windt LJ, Bassel-Duby R, Olson EN & Rothermel BA. (2005). Calcineurin is necessary for the maintenance but not embryonic development of slow muscle fibers. Mol Cell Biol 25, 6629–6638.

    PubMed  CAS  Google Scholar 

  • Ohanna M, Sobering AK, Lapointe T, Lorenzo L, Praud C, Petroulakis E, Sonenberg N, Kelly PA, Sotiropoulos A & Pende M. (2005). Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 7, 286–294.

    PubMed  CAS  Google Scholar 

  • Okamura H, Garcia-Rodriguez C, Martinson H, Qin J, Virshup DM & Rao A. (2004). A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. Mol Cell Biol 24, 4184–4195.

    PubMed  CAS  Google Scholar 

  • Olson EN & Williams RS. (2000). Calcineurin signaling and muscle remodeling. Cell 101, 689–692.

    PubMed  CAS  Google Scholar 

  • Osada S, Mizuno K, Saido TC, Suzuki K, Kuroki T & Ohno S. (1992). A new member of the protein kinase C family, nPKC theta, predominantly expressed in skeletal muscle. Mol Cell Biol 12, 3930–3938.

    PubMed  CAS  Google Scholar 

  • Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM & Schiaffino S. (2002). A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A 99, 9213–9218.

    PubMed  CAS  Google Scholar 

  • Parsons SA, Millay DP, Wilkins BJ, Bueno OF, Tsika GL, Neilson JR, Liberatore CM, Yutzey KE, Crabtree GR, Tsika RW & Molkentin JD. (2004). Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem 279, 26192–26200.

    PubMed  CAS  Google Scholar 

  • Parsons SA, Wilkins BJ, Bueno OF & Molkentin JD. (2003). Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol Cell Biol 23, 4331–4343.

    PubMed  CAS  Google Scholar 

  • Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M & Saltin B. (2003). Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 24, 113–119.

    PubMed  CAS  Google Scholar 

  • Petersen KF, Dufour S, Befroy D, Garcia R & Shulman GI. (2004). Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350, 664–671.

    PubMed  CAS  Google Scholar 

  • Pette D. (2001). Historical Perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol 90, 1119–1124.

    PubMed  CAS  Google Scholar 

  • Pette D & Staron RS. (1997). Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170, 143–223.

    PubMed  CAS  Google Scholar 

  • Puigserver P & Spiegelman BM. (2003). Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24, 78–90.

    PubMed  CAS  Google Scholar 

  • Putman CT, Kiricsi M, Pearcey J, MacLean IM, Bamford JA, Murdoch GK, Dixon WT & Pette D. (2003). AMPK activation increases uncoupling protein-3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions. J Physiol 551, 169–178.

    PubMed  CAS  Google Scholar 

  • Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD & Glass DJ. (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3, 1009–1013.

    PubMed  CAS  Google Scholar 

  • Ryder JW, Bassel-Duby R, Olson EN & Zierath JR. (2003). Skeletal muscle reprogramming by activation of calcineurin improves insulin action on metabolic pathways. J Biol Chem 278, 44298–44304.

    PubMed  CAS  Google Scholar 

  • Sage J, Miller AL, Perez-Mancera PA, Wysocki JM & Jacks T. (2003). Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228.

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Arnolds DE, Ekberg I, Thorell A & Goodyear LJ. (2004). Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle. Biochem Biophys Res Commun 319, 419–425.

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Aschenbach WG, Hirshman MF & Goodyear LJ. (2003). Akt signaling in skeletal muscle: regulation by exercise and passive stretch. Am J Physiol Endocrinol Metab 285, E1081–1088.

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Hirshman MF, Aschenbach WG & Goodyear LJ. (2002). Contraction regulation of Akt in rat skeletal muscle. J Biol Chem 277, 11910–11917.

    PubMed  CAS  Google Scholar 

  • Salmons S & Vrbova G. (1967). Changes in the speed of mammalian fast muscle following longterm stimulation. J Physiol 192, 39P-40P.

    PubMed  CAS  Google Scholar 

  • Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH & Goldberg AL. (2004). Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412.

    PubMed  CAS  Google Scholar 

  • Sartorelli V & Fulco M. (2004). Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy. Sci STKE 2004, re11.

    Google Scholar 

  • Schiaffino S, Bormioli SP & Aloisi M. (1976). The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch B Cell Pathol 21, 113–118.

    PubMed  CAS  Google Scholar 

  • Schiaffino S & Reggiani C. (1994). Myosin isoforms in mammalian skeletal muscle. J Appl Physiol 77, 493–501.

    PubMed  CAS  Google Scholar 

  • Schiaffino S & Reggiani C. (1996). Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76, 371–423.

    PubMed  CAS  Google Scholar 

  • Schiaffino S & Serrano A. (2002). Calcineurin signaling and neural control of skeletal muscle fiber type and size. Trends Pharmacol Sci 23, 569–575.

    PubMed  CAS  Google Scholar 

  • Serrano AL, Murgia M, Pallafacchina G, Calabria E, Coniglio P, Lomo T & Schiaffino S. (2001). Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc Natl Acad Sci U S A 98, 13108–13113.

    PubMed  CAS  Google Scholar 

  • Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L & Schiaffino S. (1994). Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol 267, C1723–1728.

    PubMed  CAS  Google Scholar 

  • Sneddon AA, Delday MI, Steven J & Maltin CA. (2001). Elevated IGF-II mRNA and phosphorylation of 4E-BP1 and p70(S6k) in muscle showing clenbuterol-induced anabolism. Am J Physiol Endocrinol Metab 281, E676–682.

    PubMed  CAS  Google Scholar 

  • Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD & Glass DJ. (2004). The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14, 395–403.

    PubMed  CAS  Google Scholar 

  • Turinsky J & Damrau-Abney A. (1999). Akt kinases and 2-deoxyglucose uptake in rat skeletal muscles in vivo: study with insulin and exercise. Am J Physiol 276, R277–282.

    PubMed  CAS  Google Scholar 

  • Vitadello M, Schiaffino MV, Picard A, Scarpa M & Schiaffino S. (1994). Gene transfer in regenerating muscle. Hum Gene Ther 5, 11–18.

    PubMed  CAS  Google Scholar 

  • Vlahopoulos S, Zimmer WE, Jenster G, Belaguli NS, Balk SP, Brinkmann AO, Lanz RB, Zoumpourlis VC & Schwartz RJ. (2005). Recruitment of the androgen receptor via serum response factor facilitates expression of a myogenic gene. J Biol Chem 280, 7786–7792.

    PubMed  CAS  Google Scholar 

  • Wang Y, Falasca M, Schlessinger J, Malstrom S, Tsichlis P, Settleman J, Hu W, Lim B & Prywes R. (1998). Activation of the c-fos serum response element by phosphatidyl inositol 3-kinase and rho pathways in HeLa cells. Cell Growth Differ 9, 513–522.

    PubMed  CAS  Google Scholar 

  • Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H & Evans RM. (2004). Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2, e294.

    PubMed  Google Scholar 

  • Wu H, Gallardo T, Olson EN, Williams RS & Shohet RV. (2003). Transcriptional analysis of mouse skeletal myofiber diversity and adaptation to endurance exercise. J Muscle Res Cell Motil 24, 587–592.

    PubMed  CAS  Google Scholar 

  • Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R & Williams RS. (2002). Regulation of Mitochondrial Biogenesis in Skeletal Muscle by CaMK. Science 296, 349–352.

    PubMed  CAS  Google Scholar 

  • Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, Simard AR, Michel RN, Bassel-Duby R, Olson EN & Williams RS. (2000). MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. Embo J 19, 1963–1973.

    PubMed  CAS  Google Scholar 

  • Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ, Shelton JM, Hutcheson KA, DiMaio JM, Olson EN, Bassel-Duby R & Williams RS. (2001). Activation of MEF2 by muscle activity is mediated through a calcineurin- dependent pathway. Embo J 20, 6414–6423.

    PubMed  CAS  Google Scholar 

  • Yang ZZ, Tschopp O, Baudry A, Dummler B, Hynx D & Hemmings BA. (2004). Physiological functions of protein kinase B/Akt. Biochem Soc Trans 32, 350–354.

    PubMed  CAS  Google Scholar 

  • Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ & Shulman GI. (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99, 15983–15987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Schiaffino, S., Sandri, M., Murgia, M. (2006). Signaling Pathways Controlling Muscle Fiber Size and Type In Response To Nerve Activity. In: Bottinelli, R., Reggiani, C. (eds) Skeletal Muscle Plasticity in Health and Disease. Advances in Muscle Research, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5177-8_4

Download citation

Publish with us

Policies and ethics