Skip to main content

Striated Muscle Plasticity: Regulation of the Myosin Heavy Chain Genes

  • Chapter
Skeletal Muscle Plasticity in Health and Disease

Part of the book series: Advances in Muscle Research ((ADMR,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, W. T., Gilbert, E. M., Lowes, B. D., Minobe, W. A., Larrabee, P., Roden, R. L., Dutcher, D., Sederberg, J., Lindenfeld, J. A., Wolfel, E. E. et al. (2002). Coordinate changes in Myosin heavy chain isoform gene expression are selectively associated with alterations in dilated cardiomyopathy phenotype. Molecular Medicine 8, 750–60.

    PubMed  CAS  Google Scholar 

  • Acakpo-Satchivi, L. J. R., Edelmann, W., Sartorius, C., Lu, B. D., Wahr, P. A., Watkins, S. C., Metzger, J. M., Leinwand, L. and Kucherlapati, R. (1997). Growth and Muscle Defects in Mice Lacking Adult Myosin Heavy Chain Genes. J. Cell Biol. 139, 1219–1229.

    PubMed  CAS  Google Scholar 

  • Adams, G. R., Haddad, F. and Baldwin, K. M. (1999a). Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. Journal of Applied Physiology 87, 1705–12.

    CAS  Google Scholar 

  • Adams, G. R., Haddad, F., McCue, S. A., Bodell, P. W., Zeng, M., Qin, L., Qin, A. X. and Baldwin, K. M. (2000). Effects of spaceflight and thyroid deficiency on rat hindlimb development. II. Expression of MHC isoforms. Journal of Applied Physiology 88, 904–16.

    PubMed  CAS  Google Scholar 

  • Adams, G. R., McCue, S. A., Zeng, M. and Baldwin, K. M. (1999b). Time course of myosin heavy chain transitions in neonatal rats: importance of innervation and thyroid state. American Journal of Physiology 276, R954–61.

    CAS  Google Scholar 

  • Alam, J. and Cook, J. L. (1990). Reporter genes: application to the study of mammalian gene transcription. Analytical Biochemistry 188, 245–54.

    PubMed  CAS  Google Scholar 

  • Allen, D. L., Harrison, B. C. and Leinwand, L. A. (2000). Inactivation of myosin heavy chain genes in the mouse: diverse and unexpected phenotypes. Microscopy Research and Technique 50, 492–9.

    PubMed  CAS  Google Scholar 

  • Allen, D. L., Harrison, B. C., Sartorius, C., Byrnes, W. C. and Leinwand, L. A. (2001a). Mutation of the IIB myosin heavy chain gene results in muscle fiber loss and compensatory hypertrophy. Am J Physiol Cell Physiol 280, C637–645.

    CAS  Google Scholar 

  • Allen, D. L. and Leinwand, L. A. (2001). Postnatal Myosin Heavy Chain Isoform Expression in Normal Mice and Mice Null for IIb or IId Myosin Heavy Chains. Developmental Biology 229, 383–395.

    PubMed  CAS  Google Scholar 

  • Allen, D. L., Sartorius, C. A., Sycuro, L. K. and Leinwand, L. A. (2001b). Different Pathways Regulate Expression of the Skeletal Myosin Heavy Chain Genes. J. Biol. Chem. 276, 43524–43533.

    CAS  Google Scholar 

  • Alpert, N. R. and Mulieri, L. A. (1986). Functional consequences of altered cardiac myosin isoenzymes. Medicine and Science in Sports and Exercise 18, 309–13.

    PubMed  CAS  Google Scholar 

  • Baldwin, K. M. (1996). Effects of altered loading states on muscle plasticity: what have we learned from rodents? Medicine and Science in Sports and Exercise 28, S101–6.

    PubMed  CAS  Google Scholar 

  • Baldwin, K. M. and Haddad, F. (2001). Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. Journal of Applied Physiology 90, 345–57.

    PubMed  CAS  Google Scholar 

  • Baldwin, K. M. and Haddad, F. (2002). Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am J Phys Med Rehabil 81, S40–51.

    PubMed  Google Scholar 

  • Berg, J. S., Powell, B. C. and Cheney, R. E. (2001). A Millennial Myosin Census. Mol. Biol. Cell 12, 780–794.

    PubMed  CAS  Google Scholar 

  • Black, B. L., and E.N. Olson. (1998). Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14, 167–196.

    PubMed  CAS  Google Scholar 

  • Boheler, K. R., Chassagne, C., Martin, X., Wisnewsky, C. and Schwartz, K. (1992). Cardiac expressions of alpha- and beta-myosin heavy chains and sarcomeric alpha-actins are regulated through transcriptional mechanisms. Results from nuclear run-on assays in isolated rat cardiac nuclei. Journal of Biological Chemistry 267, 12979–85.

    PubMed  CAS  Google Scholar 

  • Booth, F. W. and Criswell, D. S. (1997). Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures. International Journal of Sports Medicine 18 Suppl 4, S265–9.

    PubMed  Google Scholar 

  • Butler-Browne, G. S., and R.G. Whalen. (1984). Myosin isozyme transitions occurring during the postnatal development of the rat soleus muscle. Developmental Biology 102, 324–334.

    PubMed  CAS  Google Scholar 

  • Caiozzo, V. J., Baker, M. J. and Baldwin, K. M. (1998). Novel transitions in MHC isoforms: separate and combined effects of thyroid hormone and mechanical unloading. Journal of Applied Physiology 85, 2237–48.

    PubMed  CAS  Google Scholar 

  • Caiozzo, V. J., Baker, M. J., Huang, K., Chou, H., Wu, Y. Z. and Baldwin, K. M. (2003). Single-fiber myosin heavy chain polymorphism: how many patterns and what proportions? Am J Physiol Regul Integr Comp Physiol 285, R570–580.

    PubMed  Google Scholar 

  • Caiozzo, V. J., F. Haddad, M. Baker, S. McCue, and K. M. Baldwin. (1999). Mechanical overload exerts stronger control than hypothyroidism on MHC expression in rodent fast twitch muscle. American Journal of Physiology (submitted).

    Google Scholar 

  • Caiozzo, V. J., Haddad, F., Baker, M., MuCue, S. and Baldwin, K. M. (2000). MHC polymorphism in rodent plantaris muscle: effects of mechanical overload and hypothyroidism. Am J Physiol Cell Physiol 278, C709–17.

    PubMed  CAS  Google Scholar 

  • Caiozzo, V. J. and Haddad, F. (1996). Thyroid hormone: modulation of muscle structure, function, and adaptive responses to mechanical loading. Exercise and Sport Sciences Reviews 24, 321–61.

    PubMed  CAS  Google Scholar 

  • Caiozzo, V. J., Haddad, F., Baker, M. J. and Baldwin, K. M. (1996). Influence of mechanical loading on myosin heavy-chain protein and mRNA isoform expression. Journal of Applied Physiology 80, 1503–12.

    PubMed  CAS  Google Scholar 

  • Calvo, S., Venepally, P., Cheng, J. and Buonanno, A. (1999). Fiber-type-specific transcription of the troponin I slow gene is regulated by multiple elements. Molecular and Cellular Biology 19, 515–25.

    PubMed  CAS  Google Scholar 

  • Calvo, S., Vullhorst, D., Venepally, P., Cheng, J., Karavanova, I. and Buonanno, A. (2001). Molecular Dissection of DNA Sequences and Factors Involved in Slow Muscle-Specific Transcription. Mol. Cell. Biol. 21, 8490–8503.

    PubMed  CAS  Google Scholar 

  • Chikuni, K., Muroya, S. and Nakajima, I. (2004). Absence of the functional Myosin heavy chain 2b isoform in equine skeletal muscles. Zoolog Sci 21, 589–96.

    PubMed  CAS  Google Scholar 

  • Chin, E. R., E.N. Olson, J.A. Richardson, Q. Yang, C. Humphries, J. M. Shelton, H. Wu, W. Zhu, R. Bassel-Duby, and R. Sanders Williams. (1998). A calcineurin-dependent transcriptionial pathway controls skeletal muscle fiber type. Genes and Development 12, 1–11.

    Google Scholar 

  • Chizzonite, R. A. and Zak, R. (1984). Regulation of myosin isoenzyme composition in fetal and neonatal rat ventricle by endogenous thyroid hormones. Journal of Biological Chemistry 259, 12628–32.

    PubMed  CAS  Google Scholar 

  • Condon, K., L. Silberstein, H. M. Blau, and W.J. Thompson. (1990). Develpment of muscle fiber types in the prenatal rat hindlimb. Develpmental Biology 138, 256–274.

    CAS  Google Scholar 

  • Corin, S., Levitt, L., O’Mahoney, J., Joya, J., Hardeman, E. and Wade, R. (1995). Delineation of a Slow-Twitch-Myofiber-Specific Transcriptional Element by Using in vivo Somatic Gene Transfer. PNAS 92, 6185–6189.

    PubMed  CAS  Google Scholar 

  • Cox, R. D. and Buckingham, M. E. (1992). Actin and myosin genes are transcriptionally regulated during mouse skeletal muscle development. Developmental Biology 149, 228–34.

    PubMed  CAS  Google Scholar 

  • Cox, R. D., Weydert, A., Barlow, D. and Buckingham, M. E. (1991). Three linked myosin heavy chain genes clustered within 370 kb of each other show independent transcriptional and post-transcriptional regulation during differentiation of a mouse muscle cell line. Developmental Biology 143, 36–43.

    PubMed  CAS  Google Scholar 

  • d’Albis, A., Couteaux, R., Janmot, C., Roulet, A. and Mira, J. C. (1988). Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Myosin isoform analysis. European Journal of Biochemistry 174, 103–10.

    PubMed  CAS  Google Scholar 

  • d’Albis, A., R. Couteaux, C. Janmot, and A. Roulet. (1989). Specific programs of myosin expression in the postnatal development of rat muscles. Eur. J. Biochem. 183, 583–590.

    PubMed  CAS  Google Scholar 

  • Demirel, H. A., Powers, S. K., Naito, H., Hughes, M. and Coombes, J. S. (1999). Exercise-induced alterations in skeletal muscle myosin heavy chain phenotype: dose-response relationship. Journal of Applied Physiology 86, 1002–8.

    PubMed  CAS  Google Scholar 

  • Dhalla, N. S., Liu, X., Panagia, V. and Takeda, N. (1998). Subcellular remodeling and heart dysfunction in chronic diabetes [editorial]. Cardiovascular Research 40, 239–47.

    PubMed  CAS  Google Scholar 

  • Di Maso, N. A., Caiozzo, V. J. and Baldwin, K. M. (2000). Single-fiber myosin heavy chain polymorphism during postnatal development: modulation by hypothyroidism. Am J Physiol Regul Integr Comp Physiol 278, R1099–106.

    PubMed  Google Scholar 

  • Dillmann, W. H. (1984). Hormonal influences on cardiac myosin ATPase activity and myosin isoenzyme distribution. Molecular and Cellular Endocrinology 34, 169–81.

    PubMed  CAS  Google Scholar 

  • Dillmann, W. H. (1989). Diabetes and thyroid-hormone-induced changes in cardiac function and their molecular basis. Annual Review of Medicine 40, 373–94.

    PubMed  CAS  Google Scholar 

  • Fitts, R. H., McDonald, K. S. and Schluter, J. M. (1991). The determinants of skeletal muscle force and power: their adaptability with changes in activity pattern. Journal of Biomechanics 24 Suppl 1, 111–22.

    PubMed  Google Scholar 

  • Fitts, R. H. and Widrick, J. J. (1996). Muscle mechanics: adaptations with exercise-training. Exercise and Sport Sciences Reviews 24, 427–73.

    PubMed  CAS  Google Scholar 

  • Giger, J. M., Haddad, F., Qin, A. X. and Baldwin, K. M. (2000). In vivo regulation of the beta-myosin heavy chain gene in soleus muscle of suspended and weight-bearing rats. Am J Physiol Cell Physiol 278, C1153–61.

    PubMed  CAS  Google Scholar 

  • Giger, J. M., Haddad, F., Qin, A. X. and Baldwin, K. M. (2002). Functional overload increases [beta]-MHC promoter activity in rodent fast muscle via the proximal MCAT ([beta]e3) site. Am J Physiol Cell Physiol 282, C518-C527.

    PubMed  CAS  Google Scholar 

  • Giger, J. M., Haddad, F., Qin, A. X. and Baldwin, K. M. (2004a). Effect of cyclosporin A treatment on the in vivo regulation of type I MHC gene expression. Journal of Applied Physiology 97, 475–483.

    CAS  Google Scholar 

  • Giger, J. M., Haddad, F., Qin, A. X., Zeng, M. and Baldwin, K. M. (2004b). The Effect of Unloading on Type I Myosin Heavy Chain Gene Regulation in Rat Soleus Muscle. Journal of Applied Physiology, 01099.2004.

    Google Scholar 

  • Goodson, H. V., and J.A. Spudich. (1993). Molecular evolution of the myosin family: Relationships derived from comparisons of amino acid sequences. Proc. Natl. Acad. Sci. USA 90, 659–663.

    PubMed  CAS  Google Scholar 

  • Grifone, R., Laclef, C., Spitz, F., Lopez, S., Demignon, J., Guidotti, J.-E., Kawakami, K., Xu, P.-X., Kelly, R., Petrof, B. J. et al. (2004). Six1 and Eya1 Expression Can Reprogram Adult Muscle from the Slow-Twitch Phenotype into the Fast-Twitch Phenotype. Mol. Cell. Biol. 24, 6253–6267.

    PubMed  CAS  Google Scholar 

  • Grossman, E. J., Roy, R. R., Talmadge, R. J., Zhong, H. and Edgerton, V. R. (1998). Effects of inactivity on myosin heavy chain composition and size of rat soleus fibers. Muscle and Nerve 21, 375–89.

    PubMed  CAS  Google Scholar 

  • Gulick, J., Subramaniam, A., Neumann, J. and Robbins, J. (1991). Isolation and characterization of the mouse cardiac myosin heavy chain genes. Journal of Biological Chemistry 266, 9180–5.

    PubMed  CAS  Google Scholar 

  • Gustafson, T. A., B. E. Markham, and E. Morkin. (1985). Analysis of thyroid hormone effects on myosin heavy chain gene expression in cardiac and soleus muscles using a novel dot-blot mRNA assay. Biochem. Biophys. Res. Commun. 130, 1161–1167.

    PubMed  CAS  Google Scholar 

  • Haddad, F., Bodell, P. W. and Baldwin, K. M. (1995). Pressure-induced regulation of myosin expression in rodent heart. Journal of Applied Physiology 78, 1489–95.

    PubMed  CAS  Google Scholar 

  • Haddad, F., Bodell, P. W., McCue, S. A. and Baldwin, K. M. (1997a). Effects of diabetes on rodent cardiac thyroid hormone receptor and isomyosin expression. American Journal of Physiology 272, E856–63.

    CAS  Google Scholar 

  • Haddad, F., Bodell, P. W., Qin, A. X., Giger, J. M. and Baldwin, K. M. (2003a). Role of antisense RNA in coordinating cardiac myosin heavy chain gene switching. J. Biol. Chem. 278, 37132–37138.

    CAS  Google Scholar 

  • Haddad, F., Herrick, R. E., Adams, G. R. and Baldwin, K. M. (1993). Myosin heavy chain expression in rodent skeletal muscle: effects of exposure to zero gravity. Journal of Applied Physiology 75, 2471–7.

    PubMed  CAS  Google Scholar 

  • Haddad, F., Masatsugu, M., Bodell, P. W., Qin, A., McCue, S. A. and Baldwin, K. M. (1997b). Role of thyroid hormone and insulin in control of cardiac isomyosin expression. Journal of Molecular and Cellular Cardiology 29, 559–69.

    CAS  Google Scholar 

  • Haddad, F., P.W. Bodell, A>S.A. McCue, R.E. Herrick, and K.M. Baldwin. (1993). Food restriction-induced transformations in cardiac functional and biochemical properties in rats. J. Appl. Physiol. 74, 606–612.

    PubMed  CAS  Google Scholar 

  • Haddad, F., Qin, A. X., Zeng, M., McCue, S. A. and Baldwin, K. M. (1998). Interaction of hyperthyroidism and hindlimb suspension on skeletal myosin heavy chain expression. Journal of Applied Physiology 85, 2227–36.

    PubMed  CAS  Google Scholar 

  • Haddad, F., Roy, R. R., Zhong, H., Edgerton, V. R. and Baldwin, K. M. (2003b). Atrophy responses to muscle inactivity:II. molecular markers of protein deficit. Journal of Applied Physiology 95, 791–802.

    CAS  Google Scholar 

  • Harridge, S. D., Bottinelli, R., Canepari, M., Pellegrino, M., Reggiani, C., Esbjornsson, M., Balsom, P. D. and Saltin, B. (1998). Sprint training, in vitro and in vivo muscle function, and myosin heavy chain expression. Journal of Applied Physiology 84, 442–9.

    PubMed  CAS  Google Scholar 

  • Hildebrandt, A. L. and Neufer, P. D. (2000). Exercise attenuates the fasting-induced transcriptional activation of metabolic genes in skeletal muscle. Am J Physiol Endocrinol Metab 278, E1078–86.

    PubMed  CAS  Google Scholar 

  • Hoh, J. F. Y. (2002). ‘Superfast’ or masticatory myosin and the evolution of jaw-closing muscles of vertebrates. J Exp Biol 205, 2203–2210.

    PubMed  Google Scholar 

  • Huey, K. A., Haddad, F., Qin, A. X. and Baldwin, K. M. (2003). Transcriptional regulation of the type I myosin heavy chain gene in denervated rat soleus. Am J Physiol Cell Physiol 284, C738–748.

    PubMed  CAS  Google Scholar 

  • Huey, K. A., Roy, R. R., Baldwin, K. M. and Edgerton, V. R. (2001). Temporal effects of inactivty on myosin heavy chain gene expression in rat slow muscle. Muscle and Nerve 24, 517–26.

    PubMed  CAS  Google Scholar 

  • Huey, K. A., Roy, R. R., Haddad, F., Edgerton, V. R. and Baldwin, K. M. (2002). Transcriptional regulation of the type I myosin heavy chain promoter in inactive rat soleus. Am J Physiol Cell Physiol 282, C528-C537.

    PubMed  CAS  Google Scholar 

  • Karasseva, N., Tsika, G., Ji, J., Zhang, A., Mao, X. and Tsika, R. (2003). Transcription Enhancer Factor 1 Binds Multiple Muscle MEF2 and A/T-Rich Elements during Fast-to-Slow Skeletal Muscle Fiber Type Transitions. Mol. Cell. Biol. 23, 5143–5164.

    PubMed  CAS  Google Scholar 

  • Knotts, S., Rindt, H., Neumann, J. and Robbins, J. (1994). In vivo regulation of the mouse beta myosin heavy chain gene. Journal of Biological Chemistry 269, 31275–82.

    PubMed  CAS  Google Scholar 

  • Knotts, S., Rindt, H. and Robbins, J. (1995). Position independent expression and developmental regulation is directed by the beta myosin heavy chain gene’s 5’ upstream region in transgenic mice. Nucleic Acids Research 23, 3301–9.

    PubMed  CAS  Google Scholar 

  • Knotts, S., Saanchez, A., Rindt, H. and Robbins, J. (1996). Developmental Modulation of a beta myosin heavy chain promoter-driven transgene. Developmental Dynamics 206, 182–92.

    PubMed  CAS  Google Scholar 

  • Konig, S., Burkman, J., Fitzgerald, J., Mitchell, M., Su, L. and Stedman, H. (2002). Modular Organization of Phylogenetically Conserved Domains Controlling Developmental Regulation of the Human Skeletal Myosin Heavy Chain Gene Family. J. Biol. Chem. 277, 27593–27605.

    PubMed  CAS  Google Scholar 

  • Krenz, M., Sanbe, A., Bouyer-Dalloz, F., Gulick, J., Klevitsky, R., Hewett, T. E., Osinska, H. E., Lorenz, J. N., Brosseau, C., Federico, A. et al. (2003). Analysis of Myosin Heavy Chain Functionality in the Heart. J. Biol. Chem. 278, 17466–17474.

    PubMed  CAS  Google Scholar 

  • Kubis, H.-P., Hanke, N., Scheibe, R. J., Meissner, J. D. and Gros, G. (2003). Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture. Am J Physiol Cell Physiol 285, C56–63.

    PubMed  CAS  Google Scholar 

  • Lakich, M. M., Diagana, T. T., North, D. L. and Whalen, R. G. (1998). MEF-2 and Oct-1 Bind to Two Homologous Promoter Sequence Elements and Participate in the Expression of a Skeletal Muscle-specific Gene. J. Biol. Chem. 273, 15217–15226.

    PubMed  CAS  Google Scholar 

  • Larsson, L., and R.L. Moss. (1993). Maximum velocity of shortening in relatioin to myosin isoform composition in single fibres from human skeletal muscles. J. Physiol. 472, 595–614.

    PubMed  CAS  Google Scholar 

  • Lin, J., Wu, H., Tarr, P. T., Zhang, C.-Y., Wu, Z., Boss, O., Michael, L. F., Puigserver, P., Isotani, E., Olson, E. N. et al. (2002). Transcriptional co-activator PGC-1[alpha] drives the formation of slow-twitch muscle fibres. Nature 418, 797–801.

    PubMed  CAS  Google Scholar 

  • Lompre, A. M., Mercadier, J. J., Wisnewsky, C., Bouveret, P., Pantaloni, C., D’Albis, A. and Schwartz, K. (1981). Species- and age-dependent changes in the relative amounts of cardiac myosin isoenzymes in mammals. Developmental Biology 84, 286–290.

    CAS  Google Scholar 

  • Lompre, A. M., Nadal-Ginard, B. and Mahdavi, V. (1984). Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated. Journal of Biological Chemistry 259, 6437–46.

    PubMed  CAS  Google Scholar 

  • Lompre, A. M., Schwartz, K., d’Albis, A., Lacombe, G., Van Thiem, N. and Swynghedauw, B. (1979). Myosin isoenzyme redistribution in chronic heart overload. Nature 282, 105–7.

    PubMed  CAS  Google Scholar 

  • Lowes, B. D., Minobe, W., Abraham, W. T., Rizeq, M. N., Bohlmeyer, T. J., Quaife, R. A., Roden, R. L., Dutcher, D. L., Robertson, A. D., Voelkel, N. F. et al. (1997). Changes in Gene Expression in the Intact Human Heart . Downregulation of alpha -Myosin Heavy Chain in Hypertrophied, Failing Ventricular Myocardium. J. Clin. Invest. 100, 2315–2324.

    PubMed  CAS  Google Scholar 

  • Lupa-Kimball, V. A. and Esser, K. A. (1998). Use of DNA injection for identification of slow nerve-dependent regions of the MLC2s gene. American Journal of Physiology 274, C229–35.

    PubMed  CAS  Google Scholar 

  • Mably, J. D. and Liew, C. C. (1996). Factors involved in cardiogenesis and the regulation of cardiac-specific gene expression. Circulation Research 79, 4–13.

    PubMed  CAS  Google Scholar 

  • Mahdavi, V., Chambers, A. P. and Nadal-Ginard, B. (1984). Cardiac alpha- and beta-myosin heavy chain genes are organized in tandem. Proceedings of the National Academy of Sciences of the United States of America 81, 2626–30.

    PubMed  CAS  Google Scholar 

  • Mahdavi, V., E. Strehler, M. Periasamy, D.F. Wieczorek, S. Izumo and B. Nadal-Ginard. (1986). Sacromeric myosin heavy chain gene family: Organisation and pattern of expression. Med. Sci. Sports Exerc. 18, 229–308.

    Google Scholar 

  • Mahdavi, V., Izumo, S. and Nadal-Ginard, B. (1987). Developmental and hormonal regulation of sarcomeric myosin heavy chain gene family. Circulation Research 60, 804–14.

    PubMed  CAS  Google Scholar 

  • McCarthy, J. J., Fox, A. M., Tsika, G. L., Gao, L. and Tsika, R. W. (1997). beta-MHC transgene expression in suspended and mechanically overloaded/suspended soleus muscle of transgenic mice. Amer J Physiol 272, R1552–61.

    PubMed  CAS  Google Scholar 

  • McCarthy, J. J., Vyas, D. R., Tsika, G. L. and Tsika, R. W. (1999). Segregated regulatory elements direct beta-myosin heavy chain expression in response to altered muscle activity. Journal of Biological Chemistry 274, 14270–9.

    PubMed  CAS  Google Scholar 

  • McKoy, G., M.E. Leger, F. Bacou, and G. Goldspink. (1998). Differential expression of myosin heavy chain mRNA and protein isoforms in four functionally diverse rabbit skeletal muscles during pre- and postnatal development. Developmental Dynamics 211, 193–203.

    PubMed  CAS  Google Scholar 

  • Mercadier, J. J., Lompre, A. M., Wisnewsky, C., Samuel, J. L., Bercovici, J., Swynghedauw, B. and Schwartz, K. (1981). Myosin isoenzyme changes in several models of rat cardiac hypertrophy. Circulation Research 49, 525–32.

    PubMed  CAS  Google Scholar 

  • Miyata, S., Minobe, W., Bristow, M. R. and Leinwand, L. A. (2000). Myosin Heavy Chain Isoform Expression in the Failing and Nonfailing Human Heart. Circ Res 86, 386–390.

    PubMed  CAS  Google Scholar 

  • Molkentin, J. D., Jobe, S. M. and Markham, B. E. (1996). Alpha-myosin heavy chain gene regulation: delineation and characterization of the cardiac muscle-specific enhancer and muscle-specific promoter. Journal of Molecular and Cellular Cardiology 28, 1211–25.

    PubMed  CAS  Google Scholar 

  • Molkentin, J. D., Kalvakolanu, D. V. and Markham, B. E. (1994). Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Molecular and Cellular Biology 14, 4947–57.

    PubMed  CAS  Google Scholar 

  • Molkentin, J. D. and Olson, E. N. (1996). Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proceedings of the National Academy of Sciences of the United States of America 93, 9366–73.

    PubMed  CAS  Google Scholar 

  • Morkin, E. (1993). Regulation of myosin heavy chain genes in the heart. Circulation 87, 1451–60.

    PubMed  CAS  Google Scholar 

  • Morkin, E. (2000). Control of cardiac myosin heavy chain gene expression. Microscopy Research and Technique 50, 522–31.

    PubMed  CAS  Google Scholar 

  • Nakao, K., Minobe, W., Roden, R., Bristow, M. R. and Leinwand, L. A. (1997). Myosin Heavy Chain Gene Expression in Human Heart Failure. J. Clin. Invest. 100, 2362–2370.

    PubMed  CAS  Google Scholar 

  • Nakayama, M., J. Stauffer, J. Cheng, S.Banerjee-Basu, E. Wawrousek, and A. Buonanno. (1996). Common core sequences are found in skeletal muscle Slow- and Fast-Fiber-Type-Specific regulatory elements. Mol. Cell Biol. 16, 2408–2417.

    PubMed  CAS  Google Scholar 

  • Ojamaa, K., Samarel, A. M. and Klein, I. (1995). Identification of a contractile-responsive element in the cardiac alpha-myosin heavy chain gene. Journal of Biological Chemistry 270, 31276–81.

    PubMed  CAS  Google Scholar 

  • Olson, E. N. and Williams, R. S. (2000). Remodeling muscles with calcineurin. Bioessays 22, 510–9.

    PubMed  CAS  Google Scholar 

  • Pette, D., Peuker, H. and Staron, R. S. (1999). The impact of biochemical methods for single muscle fibre analysis. Acta Physiologica Scandinavica 166, 261–77.

    PubMed  CAS  Google Scholar 

  • Pette, D. and Staron, R. S. (1990). Cellular and molecular diversities of mammalian skeletal muscle fibers. Reviews of Physiology Biochemistry and Pharmacology 116, 1–76.

    CAS  Google Scholar 

  • Pette, D. and Staron, R. S. (2000). Myosin isoforms, muscle fiber types, and transitions. Microscopy Research and Technique 50, 500–9.

    PubMed  CAS  Google Scholar 

  • Pette, D. and Staron, R. S. (2001). Transitions of muscle fiber phenotypic profiles Myosin isoforms, muscle fiber types, and transitions. Histochemistry and Cell Biology 115, 359–72.

    PubMed  CAS  Google Scholar 

  • Reiser, P. J., Portman, M. A., Ning, X.-H. and Moravec, C. S. (2001). Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280, H1814–1820.

    PubMed  CAS  Google Scholar 

  • Rindt, H., Knotts, S. and Robbins, J. (1995). Segregation of cardiac and skeletal muscle-specific regulatory elements of the beta-myosin heavy chain gene. Proceedings of the National Academy of Sciences of the United States of America 92, 1540–4.

    PubMed  CAS  Google Scholar 

  • Rivero, J. L., Talmadge, R. J. and Edgerton, V. R. (1999). Interrelationships of myofibrillar ATPase activity and metabolic properties of myosin heavy chain-based fibre types in rat skeletal muscle. Histochemistry and Cell Biology 111, 277–87.

    PubMed  CAS  Google Scholar 

  • Rottman, J. N., Thompson, W. R., Nadal-Ginard, B. and Mahdavi, V. (1990). Myosin heavy chain gene expression: interplay of cis and trans factors determines hormonal and tissue specificity. New York: de Gruyter.

    Google Scholar 

  • Saez, L. J., Gianola, K. M., McNally, E. M., Feghali, R., Eddy, R., Shows, T. B. and Leinwand, L. A. (1987). Human cardiac myosin heavy chain genes and their linkage in the genome. Nucleic Acids Research 15, 5443–59.

    PubMed  CAS  Google Scholar 

  • Samarel, A. M., Spragia, M. L., Maloney, V., Kamal, S. A. and Engelmann, G. L. (1992). Contractile arrest accelerates myosin heavy chain degradation in neonatal rat heart cells. American Journal of Physiology 263, C642–52.

    PubMed  CAS  Google Scholar 

  • Samuel, J. L., Dubus, I., Farhadian, F., Marotte, F., Oliviero, P., Mercadier, A., Contard, F., Barrieux, A. and Rappaport, L. (1995). Multifactorial regulation of cardiac gene expression: an in vivo and in vitro analysis. Annals of the New York Academy of Sciences 752, 370–86.

    PubMed  CAS  Google Scholar 

  • Sartorius, C. A., B. D. Lu, L. Acakpo-Satchivi, R. P. Jacobsen, W.C. Byrnes, and L.A. Leinwand. (1998). Myosin heavy chains IIa and IId are functionally distinct in the mouse. Journal of Cell Biology 141, 943–953.

    PubMed  CAS  Google Scholar 

  • Schiaffino, S., Murgia, M., Serrano, A. L., Calabria, E. and Pallafacchina, G. (1999). How is muscle phenotype controlled by nerve activity? Ital J Neurol Sci 20, 409–12.

    PubMed  CAS  Google Scholar 

  • Schiaffino, S. and Reggiani, C. (1996). Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiological Reviews 76, 371–423.

    PubMed  CAS  Google Scholar 

  • Serrano, A. L., Murgia, M., Pallafacchina, G., Calabria, E., Coniglio, P., Lomo, T. and Schiaffino, S. (2001). Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. PNAS 98, 13108–13113.

    PubMed  CAS  Google Scholar 

  • Seward, D. J., Haney, J. C., Rudnicki, M. A. and Swoap, S. J. (2001). bHLH transcription factor MyoD affects myosin heavy chain expression pattern in a muscle-specific fashion. Am J Physiol Cell Physiol 280, C408–413.

    PubMed  CAS  Google Scholar 

  • Staron, R. S. (1997). Human skeletal muscle fiber types: delineation, development, and distribution. Can. J. Appl. Physiol. 22, 307–327.

    PubMed  CAS  Google Scholar 

  • Subramaniam, A., Gulick, J., Neumann, J., Knotts, S. and Robbins, J. (1993). Transgenic analysis of the thyroid-responsive elements in the alpha-cardiac myosin heavy chain gene promoter. Journal of Biological Chemistry 268, 4331–6.

    PubMed  CAS  Google Scholar 

  • Subramaniam, A., Jones, W. K., Gulick, J., Wert, S., Neumann, J. and Robbins, J. (1991). Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. Journal of Biological Chemistry 266, 24613–20.

    PubMed  CAS  Google Scholar 

  • Swoap, S. J. (1998). In vivo analysis of the myosin heavy chain IIB promoter region. American Journal of Physiology 274, C681–7.

    PubMed  CAS  Google Scholar 

  • Swoap, S. J., Haddad, F., Bodell, P. and Baldwin, K. M. (1994). Effect of chronic energy deprivation on cardiac thyroid hormone receptor and myosin isoform expression. American Journal of Physiology 266, E254–60.

    PubMed  CAS  Google Scholar 

  • Swoap, S. J., Hunter, R. B., Stevenson, E. J., Felton, H. M., Kansagra, N. V., Lang, J. M., Esser, K. A. and Kandarian, S. C. (2000). The calcineurin-NFAT pathway and muscle fiber-type gene expression. Am J Physiol Cell Physiol 279, C915–24.

    PubMed  CAS  Google Scholar 

  • Swynghedauw, B. (1999). Molecular mechanisms of myocardial remodeling. Physiological Reviews 79, 215–62.

    PubMed  CAS  Google Scholar 

  • Takeda, S., D.L. North, M.M. Lakich, S.D. Russell, and R.G. Whalen. (1992). A possible regulatory role for conserved promotor motifs in an adult-specific muscle myosin gene from mouse. J. Biol. Chem. 267, 16957–16967.

    PubMed  CAS  Google Scholar 

  • Takeda, S., D.L. North, T. Diagana, Y. Miyagoe, M.M. Lakich, and R.G. Whalen. (1995). Myogenic regulatory factors can activate TATA-containing promotor elements via an E-box independent mechanism. J. Biol. Chem. 270, 15664–15670.

    PubMed  CAS  Google Scholar 

  • Talmadge, R. J. (2000). Myosin heavy chain-isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle and Nerve 23, 661–679.

    PubMed  CAS  Google Scholar 

  • Termin, A., R.S. Staron, and D. Pette. (1989). Myosin heavy chain isoforms in histochemically defined fiber types of rat muscle. Histochemistry 92, 453–457.

    PubMed  CAS  Google Scholar 

  • Tsika, G., Ji, J. and Tsika, R. (2004). Sp3 Proteins Negatively Regulate β Myosin Heavy Chain Gene Expression during Skeletal Muscle Inactivity. Mol. Cell. Biol. 24, 10777–10791.

    PubMed  CAS  Google Scholar 

  • Tsika, G. L., Wiedenman, J. L., Gao, L., McCarthy, J. J., Sheriff-Carter, K., Rivera-Rivera, I. D. and Tsika, R. W. (1996). Induction of beta-MHC transgene in overloaded skeletal muscle is not eliminated by mutation of conserved elements. American Journal of Physiology 271, C690–9.

    PubMed  CAS  Google Scholar 

  • Tsika, R. W., McCarthy, J., Karasseva, N., Ou, Y. and Tsika, G. L. (2002). Divergence in species and regulatory role of beta -myosin heavy chain proximal promoter muscle-CAT elements. Am J Physiol Cell Physiol 283, C1761–1775.

    PubMed  CAS  Google Scholar 

  • Vyas, D. R., McCarthy, J. J., Tsika, G. L. and Tsika, R. W. (2001). Multiprotein complex formation at the beta myosin heavy chain distal muscle CAT element correlates with slow muscle expression but not mechanical overload responsiveness. Journal of Biological Chemistry 276, 1173–84.

    PubMed  CAS  Google Scholar 

  • Wasserman, W. W. and Fickett, J. W. (1998). Identification of regulatory regions which confer muscle-specific gene expression. Journal of Molecular Biology 278, 167–181.

    PubMed  CAS  Google Scholar 

  • Wasserman, W. W., Palumbo, M., Thompson, W., Fickett, J. W. and Lawrence, C. E. (2000). Human-mouse genome comparisons to locate regulatory sites. Nat Genet 26, 225–8.

    PubMed  CAS  Google Scholar 

  • Weiss, A. and Leinwand, L. A. (1996). The mammalian myosin heavy chain gene family. Annual Review of Cell and Developmental Biology 12, 417–39.

    PubMed  CAS  Google Scholar 

  • Weiss, A., McDonough, D., Wertman, B., Acakpo-Satchivi, L., Montgomery, K., Kucherlapati, R., Leinwand, L. and Krauter, K. (1999). Organization of human and mouse skeletal myosin heavy chain gene clusters is highly conserved. Proceedings of the National Academy of Sciences of the United States of America 96, 2958–63.

    PubMed  CAS  Google Scholar 

  • Weydert, A., Daubas, P., Lazaridis, I., Barton, P., Garner, I., Leader, D. P., Bonhomme, F., Catalan, J., Simon, D., Guenet, J. L. et al. (1985). Genes for skeletal muscle myosin heavy chains are clustered and are not located on the same mouse chromosome as a cardiac myosin heavy chain gene. Proceedings of the National Academy of Sciences of the United States of America 82, 7183–7.

    PubMed  CAS  Google Scholar 

  • Wheeler, M. T., E.C. Snyder, M.N. Patterson, and S.J. Swoap. (1999). An E-box within the MHC IIB gene is bound by MyoD and is required for gene expressioin in fast muscle. Am. J. Physiol. 276, C1069-C1078.

    PubMed  CAS  Google Scholar 

  • Wolff, J. A., Ludtke, J. J., Acsadi, G., Williams, P. and Jani, A. (1992). Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Human Molecular Genetics 1, 363–9.

    PubMed  CAS  Google Scholar 

  • Wright, C. E., Bodell, P. W., Haddad, F., Qin, A. X. and Baldwin, K. M. (2001). In vivo regulation of the beta-myosin heavy chain gene in hypertensive rodent heart. Am J Physiol Cell Physiol 280, C1262–76.

    PubMed  CAS  Google Scholar 

  • Wright, C. E., Haddad, F., Qin, A. X., Bodell, P. W. and Baldwin, K. M. (1999). In vivo regulation of beta-MHC gene in rodent heart: role of T3 and evidence for an upstream enhancer. American Journal of Physiology 276, C883–91.

    PubMed  CAS  Google Scholar 

  • Wu, H., Naya, F. J., McKinsey, T. A., Mercer, B., Shelton, J. M., Chin, E. R., Simard, A. R., Michel, R. N., Bassel-Duby, R., Olson, E. N. et al. (2000). MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. Embo Journal 19, 1963–73.

    PubMed  CAS  Google Scholar 

  • Yazaki, Y., Tsuchimochi, H., Kurabayashi, M. and Komuro, I. (1989). Molecular adaptation to pressure overload in human and rat hearts. Journal of Molecular and Cellular Cardiology 21 Suppl 5, 91–101.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Haddad, F., Pandorf, C.E., Giger, J.M., Baldwin, K.M. (2006). Striated Muscle Plasticity: Regulation of the Myosin Heavy Chain Genes. In: Bottinelli, R., Reggiani, C. (eds) Skeletal Muscle Plasticity in Health and Disease. Advances in Muscle Research, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5177-8_3

Download citation

Publish with us

Policies and ethics