Skip to main content

DESIGN, SYNTHESIS AND CHARACTERIZATION OF ORDERED MESOPOROUS MATERIALS FOR ENVIRONMENTAL APPLICATIONS

  • Conference paper

Part of the book series: NATO Security through Science Series ((NASTC))

Abstract

Since the first report on the MCM-41 silica in 1992 several thousands of papers have been published on ordered mesoporous materials (OMMs). These novel materials, prepared either by soft- or hard-templating syntheses, become more and more important in many fields of science and technology such as adsorption, catalysis, separations, environmental processes, nanotechnology and biotechnology. The aim of this article is to provide a brief review on the OMMs design and synthesis as well as to show potential of these materials for various environmental applications such as sequestration of carbon dioxide, removal of gaseous organic and inorganic pollutants via adsorption and catalytic degradation, removal of heavy metal ions from contaminated water, and so on. The scope of environmental applications of OMMs is broad and continuously growing. The soft- and hard-templating syntheses create great opportunities for the design of OMMs such as ordered mesoporous silicas, organosilicas and carbons with desired surface and structural properties and for their use in various environmental processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism, Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  2. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114, 10834–10843 (1992).

    Article  CAS  Google Scholar 

  3. A. Sayari, and P. Liu, Non-silica periodic mesostructured materials: recent progress, Microporous Mater. 12, 149–177 (1997).

    Article  CAS  Google Scholar 

  4. A. Stein, B.J. Melde, and R.C. Schroden, Hybrid inorganic-organic mesoporous silicates - nanoscopic reactors coming of age, Adv. Mater. 12, 1403–1419 (2000).

    Article  CAS  Google Scholar 

  5. A. Sayari, and S. Hamoudi, Periodic mesoporous silica-based organic-inorganic nanocomposite materials, Chem. Mater. 13, 3151–3168 (2001).

    Article  CAS  Google Scholar 

  6. F. Schuth, and W. Schmidt, Microporous and mesoporous materials, Adv. Mater. 14, 629–638 (2002).

    Article  CAS  Google Scholar 

  7. G.J.A.A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev. 102, 4093–4138 (2002).

    Article  CAS  Google Scholar 

  8. A. Stein, A. Advances in microporous and mesoporous solids, Adv. Mater. 15, 763–775 (2003).

    Article  CAS  Google Scholar 

  9. C.J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Evaporation-induced self-assembly: nanostructures made easy, Adv. Mater. 11, 579–585 (1999).

    Article  CAS  Google Scholar 

  10. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279, 548–552 (1998).

    Article  CAS  Google Scholar 

  11. C.P. Jaroniec, M. Kruk, M. Jaroniec, and A. Sayari., Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes, J. Phys. Chem. B 102, 5503–5510 (1998).

    Article  CAS  Google Scholar 

  12. V. Antochshuk, and M. Jaroniec., Adsorption, thermogravimetric and NMR studies of FSM-16 materials functionalized with alkylmonochlorosilanes, J. Phys. Chem. B 103, 6252–6261 (1999).

    Article  CAS  Google Scholar 

  13. V. Antochshuk, and M. Jaroniec., Functionalized mesoporous materials obtained via interfacial reactions in self-assembled silica-surfactant systems, Chem. Mater. 12, 2496–2501 (2000).

    Article  CAS  Google Scholar 

  14. V. Antochshuk, A.S. Araujo, and M. Jaroniec, Functionalized MCM-41 and CeMCM-41 materials synthesized via interfacial reactions, J. Phys. Chem. B 104, 9713–9719 (2000).

    Article  CAS  Google Scholar 

  15. M. Kruk, T. Asefa, M. Jaroniec, and G.A. Ozin, Metamorphosis of ordered mesopores to micropores: periodic silica with unprecedented loading of pendant reactive organic groups transforms to periodic microporous silica with tailorable pore size, J. Am. Chem. Soc. 124(22), 6383–6392 (2002).

    Article  CAS  Google Scholar 

  16. S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, and O. Terasaki, Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their framework, J. Am. Chem. Soc. 121, 9611–9614 (1999).

    Article  CAS  Google Scholar 

  17. B.J. Melde, B.T. Holland, C.F. Blanford, and A.A. Stein, Mesoporous sieves with unified hybrid inorganic/organic frameworks, Chem. Mater. 11, 3302–3308 (1999).

    Article  CAS  Google Scholar 

  18. T. Asefa, M.J. MacLachlan, N. Coombs, G.A. and Ozin, Periodic mesoporous organosilicas with organic groups inside the channel walls, Nature 402, 867–871 (2000).

    Google Scholar 

  19. T. Asefa, M. Kruk, M.J. MacLachlan, N. Coombs, H. Grondey, M. Jaroniec, and G.A. Ozin, Novel bifunctional periodic mesoporous organosilicas, BPMOs: synthesis, characterization, properties and in-situ selective hydroboration - alcoholysis reactions of functional groups, J. Am. Chem. Soc. 123, 8520–8530 (2001).

    Article  CAS  Google Scholar 

  20. S. Inagaki, S. Guan, T. Ohsuna, and O. Terasaki, An ordered mesoporous organosilica hybrid material with a crystal-like wall structure, Nature 416, 304–307 (2002).

    Article  CAS  Google Scholar 

  21. M. Kuroki, T. Asefa, W. Whitnal, M. Kruk, C. Yoshina-Ishii, M. Jaroniec, and G.A. Ozin, Synthesis and properties of 1,3,5-benzene periodic mesoporous organosilica (PMO): Novel aromatic PMO with three point attachments and unique thermal transformations, J. Am. Chem. Soc. 124, 13886–13895 (2002).

    Article  CAS  Google Scholar 

  22. J.R. Matos, M. Kruk, L.P. Mercuri, M. Jaroniec, T. Asefa, N. Coombs, G.A. Ozin, T. Kamiyama, and O. Terasaki, Periodic mesoporous organosilica with large cagelike pores, Chem. Mater. 14, 1903–1905 (2002).

    Article  CAS  Google Scholar 

  23. O. Olkhovyk, S. Pikus, and M. Jaroniec, Bifunctional periodic mesoporous organosilica with large heterocyclic bridging groups and mercaptopropyl ligands, J. Mater. Chem. 15, 517–1519 (2005).

    Article  CAS  Google Scholar 

  24. X. Xu, C. Song, J.M. Andresen, B.G. Miller, and A.W. Scaroni, Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as highcapacity adsorbent for CO2 capture, Energy & Fuels 16, 1463–1469 (2002).

    Article  CAS  Google Scholar 

  25. X. Xu, C. Song, J.M. Andresen, B.G. Miller, and A.W. Scaroni, Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymermodified mesoporous molecular sieve MCM-41, Microporous Mesoporous Mater. 62, 29–45 (2003).

    Article  CAS  Google Scholar 

  26. S.C. Shen, X. Chen, and S. Kawi, CO2 Adsorption over Si-MCM-41 materials having basic sites created by postmodification with La2O3, Langmuir 20, 9130–9137 (2004).

    Article  CAS  Google Scholar 

  27. A. Macario, A. Katovic, G. Giordano, F. Iucolano, D. Caputo, Synthesis of mesoporous materials for carbon dioxide sequestration, Microporous Mesoporous Mater. 81, 139–147 (2005).

    Article  CAS  Google Scholar 

  28. R. Franchi, P.J.E. Harlick, and A. Sayari, A high capacity, water tolerant adsorbent for CO2: diethanolamine supported on pore-expanded MCM-41, Stud. Surf. Sci. Catal. 156, 879–886 (2005).

    CAS  Google Scholar 

  29. H.Y. Huang, R.T. Yang, D. Chinn, and C.L. Munson, Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res. 42, 2427–2433 (2003).

    Article  CAS  Google Scholar 

  30. S. Kim, J. Ida, V.V. Guliants, and Y.S. Lin Jerry, Tailoring pore properties of MCM-48 silica for selective adsorption of CO2, J. Phys. Chem. B 109, 6287–6293 (2005).

    Article  CAS  Google Scholar 

  31. A.C.C. Chang, S.S.C. Chuang, M.M. Gray, and Y. Soong, In-situ infrared study of CO2 adsorption on SBA-15 grafted with ç-(aminopropyl)triethoxysilane, Energy & Fuels 17, 468–473 (2003).

    Article  CAS  Google Scholar 

  32. N. Hiyoshi, K. Yogo, and T. Yashima, Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor, Chem.Lett. 33, 510–511 (2004).

    Article  CAS  Google Scholar 

  33. R.A. Khatri, S.S.C. Chuang, Y. Soong, and M.M. Gray, Carbon dioxide capture by diamine-grafted SBA-15: a combined Fourier transform infrared and mass spectrometry study, Ind. Eng. Chem. Res. 44, 3702–3708 (2005).

    Article  CAS  Google Scholar 

  34. F. Zheng, D.N. Tran, B.J. Busche, G.E. Fryxell, R.S. Addleman, T.S. Zemanian, and C.L. Aardahl, Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent, Ind. Eng. Chem. Res. 44, 3099–3105 (2005).

    Article  CAS  Google Scholar 

  35. M. Kruk, M. Jaroniec, C.H. Ko, and R. Ryoo, Characterization of porous structure of SBA-15, Chem. Mater. 12, 1961–1968 (2000).

    Article  CAS  Google Scholar 

  36. X.S. Zhao, Q. Ma, and G.Q.(M.) Lu, VOC removal: comparison of MCM-41 with hydrophobic zeolites and activated carbon, Energy & Fuels 12, 1051–1054 (1998).

    Article  CAS  Google Scholar 

  37. Y. Ueno, T. Horiuchi, M. Tomita, O. Niwa, H.-S. Zhou, T. Yamada, and I. Honma, Separate detection of BTX mixture gas by a microfluidic device using a function of nanosized pores of mesoporous silica adsorbent, Anal. Chem. 74, 5257–5262 (2002).

    Article  CAS  Google Scholar 

  38. Y. Ueno, T. Horiuchi, A. Tate, O. Niwa, H. Zhou, T. Yamada, and I. Honma, Effect of the calcination temperature of self-ordered mesoporous silicate on its adsorption characteristics for aromatic hydrocarbons, New J. Chem. 29, 504–508 (2005).

    Article  CAS  Google Scholar 

  39. Y. Ueno, A. Tate, O. Niwa, H.S. Zhou, T. Yamada, and I. Honma, High benzene selectivity of mesoporous silicate for BTX gas sensing microfluidic devices, Anal. Bioanal. Chem. 382, 804–809 (2005).

    Article  CAS  Google Scholar 

  40. D.P. Serrano, G. Calleja, J.A. Botas, and F.J. Gutierrez, Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal, Ind. Eng. Chem. Res. 43, 7010–7018 (2004).

    Article  CAS  Google Scholar 

  41. E. Van Bavel, V. Meynen, P. Cool, K. Lebeau, E.F. Vansant, Adsorption of hydrocarbons on mesoporous SBA-15 and PHTS materials, Langmuir 21, 2447–2453 (2005).

    Article  CAS  Google Scholar 

  42. B.L. Newalkar, N.V. Choudary, P. Kumar, S. Komarneni, and T.S.G. Bhat, Exploring the potential of mesoporous silica, SBA-15, as an adsorbent for light hydrocarbon separation, Chem. Mater. 14, 304–309 (2002).

    Article  CAS  Google Scholar 

  43. B.L. Newalkar, N.V. Choudary, U.T. Turaga, R.P. Vijayalakshmi, P. Kumar, S. Komarneni, and T.S.G. Bhat, Potential adsorbent for light hydrocarbon separation: Role of SBA-15 framework porosity, Chem. Mater. 15, 1474–1479 (2003).

    Article  CAS  Google Scholar 

  44. X. Xu, I. Novochinskii, and C. Song, Low-temperature removal of H2S by nanoporous composite of polymer-mesoporous molecular sieve MCM-41 as adsorbent for fuel cell applications, Energy & Fuels, ASAP article (2005).

    Google Scholar 

  45. S.K. Bhargava, and D.B. Akolekar, Adsorption of NO and CO over transition-metalincorporated mesoporous catalytic materials, J. Coll. and Inter. Sci. 281, 171–178 (2005).

    Article  CAS  Google Scholar 

  46. C.F. Zhou, Y.M. Wang, J.H. Xu, T.T. Zhuang, Y. Wang, Z.Y. Wu, and J.H. Zhu, New efficient Al-containing SBA-15 materials for removing nitrosamines in mild conditions, In: Stud. Surf. Sci. Catal. 156, 907–916 (2005).

    CAS  Google Scholar 

  47. M.J. Hudson, D.B. Jackson, J.L. Ward, and M.J. Chinn, Peroxides in ordered nanoporous silicas: clean alternatives to transition metal oxidants for the removal of toxic gases, Chem. Commun. 2970–2971 (2003).

    Google Scholar 

  48. M.J. Hudson, D.B. Jackson, J.L. Ward, M.J. Chinn, and M. Stockenhuber, Peroxydisulfate in MCM-48 silicas: powerful and clean materials for the removal of toxic gases, J. Mater. Chem. 14, 1180–1186 (2004).

    Article  CAS  Google Scholar 

  49. M.J. Hudson, J.P. Knowles, P.J.F. Harris, D.B. Jackson, M.J. Chinn, and J.L. Ward, The trapping and decomposition of toxic gases such as hydrogen cyanide using modified mesoporous silicates, Microporous Mesoporous Mater. 75, 121–128 (2004).

    Article  CAS  Google Scholar 

  50. P.V. Kamat, and D. Meisel, Nanoscience opportunities in environmental remediation, Comptes Rendus Chimie 6, 999–1007 (2003).

    Article  CAS  Google Scholar 

  51. D.S. Bhatkhande, V.G. Pangarkar, and A.A.C.M. Beenackers, Photocatalytic degradation for environmental applications - a review, J. Chem. Technol. Biotechnol. 77, 102–116 (2002).

    Article  CAS  Google Scholar 

  52. X. Feng, G.E. Fryxell, L.Q. Wang, A.Y. Kim, J. Liu, and K. Kemner, Functionalized monolayers on ordered mesoporous supports, Science 276, 923–930 (1997).

    Article  CAS  Google Scholar 

  53. L. Mercier, and T.J. Pinnavaia, Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation, Adv. Mater. 9, 500–503 (1997).

    Article  CAS  Google Scholar 

  54. V. Antochshuk, and M. Jaroniec, 1-Allyl-3-propylthiourea modified mesoporous silica for mercury removal, Chem. Commun. 258–259 (2002).

    Google Scholar 

  55. V. Antochshuk, O. Olkhovyk, M. Jaroniec, I.-S. Park, and R. Ryoo, Benzoylthioureamodified mesoporous silica for mercury(II) removal, Langmuir 19, 3031–3034 (2003).

    Article  CAS  Google Scholar 

  56. O. Olkhovyk, V. Antochshuk, and M. Jaroniec, Benzoylthiourea-modified MCM-48 mesoporous silica for mercury(II) adsorption from aqueous solutions, Colloids & Surfaces, A 236, 69–72 (2004).

    Article  CAS  Google Scholar 

  57. L. Zhang, W. Zhang, J. Shi, Z. Hua, Y. Li, and J. Yan, A new thioether functionalized organic-inorganic mesoporous composite as a highly selective and capacious Hg2+ adsorbent, Chem. Commun. 210–211 (2003).

    Google Scholar 

  58. O. Olkhovyk, and M. Jaroniec, Periodic mesoporous organosilica with large heterocyclic bridging groups, J. Am. Chem. Soc. 127, 60–61 (2005).

    Article  CAS  Google Scholar 

  59. Y.-K. Lu, and X.-P. Yan, An imprinted organic-inorganic hybrid sorbent for selective separation of cadmium from aqueous solution, Anal. Chem. 76, 453–457 (2004).

    Article  CAS  Google Scholar 

  60. L.C. Cides da Silva, G. Abate, N. Andrea, M.C.A. Fantini, J.C. Masini, L.P. Mercuri, O. Olkhovyk, M. Jaroniec, and J.R. Matos, Microwave synthesis of FDU-1 silica with incorporated humic acid and its application for adsorption of Cd2+ from aqueous solutions, In: Stud. Surf. Sci. Catal. 156, 941–950 (2005).

    CAS  Google Scholar 

  61. T. Kang, Y. Park, and J. Yi, Highly selective adsorption of Pt2+ and Pd2+ using thiolfunctionalized mesoporous silica, Ind. Eng. Chem. Res. 43, 1478–1484 (2004).

    Article  CAS  Google Scholar 

  62. T. Kang, Y. Park, K. Choi, J.S. Lee, and J. Yi, Ordered mesoporous silica (SBA-15) derivatized with imidazole-containing functionalities as a selective adsorbent of precious metal ions, J. Mater. Chem. 14, 1043–1049 (2004).

    Article  CAS  Google Scholar 

  63. K.H. Nam, L.L. and Tavlarides, Synthesis of a high-density phosphonic acid functional mesoporous adsorbent: application to Chromium(III) removal, Chem. Mater. 17, 1597–1604 (2005).

    Article  CAS  Google Scholar 

  64. A. Sayari, S. Hamoudi, and Y. Yang, Applications of pore-expanded mesoporous silica. 1. Removal of heavy metal cations and organic pollutants from wastewater, Chem. Mater. 17, 212–216 (2005).

    Article  CAS  Google Scholar 

  65. R. Ryoo, S.H. Joo, and S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B 103, 7743–7746 (1999).

    Article  CAS  Google Scholar 

  66. R. Ryoo, S.H. Joo, M. Kruk, and M. Jaroniec, Ordered mesoporous carbons, Adv. Mater. 13, 677–681 (2001).

    Article  CAS  Google Scholar 

  67. S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki, Synthesis of new nanoporous carbon with hexagonally ordered mesostructure, J. Am. Chem. Soc. 122, 10712–10713 (2000).

    Article  CAS  Google Scholar 

  68. M. Kang, S.H. Yi, H.I. Lee, J.E. Yie, and J.M. Kim, Reversible replication between ordered mesoporous silica and mesoporous carbon, Chem. Commun. 1944–1945 (2002).

    Google Scholar 

  69. C. Liu, J.B. Lambert, and L. Fu, A novel family of ordered, mesoporous inorganic/organic hybrid polymers containing covalently and multiply bound microporous organic hosts, J. Am. Chem. Soc. 125, 6452–6461 (2003).

    Article  CAS  Google Scholar 

  70. Z. Liu, Y. Sakamoto, T. Ohsuna, K. Hiraga, O. Terasaki, C.H. Ko, H.J. Shin, and R. Ryoo, TEM studies of platinum nanowires fabricated in mesoporous silica MCM-41, Angew. Chem. 39, 3107–3110 (2000).

    Article  CAS  Google Scholar 

  71. S.C. Laha, and R. Ryoo, Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates, Chem. Commun. 2138–2139 (2003).

    Google Scholar 

  72. H. Yang, and D. Zhao, D., Synthesis of replica mesostructures by the nanocasting strategy, J. Mater. Chem. 15, 1217–1231 (2005).

    CAS  Google Scholar 

  73. J. Lee, S. Han, and T. Hyeon, Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates, J. Mater. Chem. 14, 478–486 (2004).

    Article  CAS  Google Scholar 

  74. M. Jaroniec, Ordered Mesoporous Materials: Synthesis, Structure and Interfacial Properties, Annals Polish Chem. Soc. 2, 1098–1102 (2003).

    Google Scholar 

  75. Z. Li, and M. Jaroniec, Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons, J. Am. Chem. Soc. 123, 9208–9209 (2001).

    Article  CAS  Google Scholar 

  76. Z. Li, and M. Jaroniec, Synthesis and adsorption properties of colloid-imprinted carbons with surface and volume mesoporosity, Chem. Mater. 15, 1327–1333 (2003).

    Article  CAS  Google Scholar 

  77. Z. Li, M. Jaroniec, Y.-J. Lee, and L.R. Radovic, High surface area graphitized carbon with uniform mesopores synthesized by a colloidal imprinting method, Chem. Commun. 1346–1347 (2002).

    Google Scholar 

  78. M. Jaroniec, and Z. Li, in: Adsorption Science and Technology: Proceedings of the Third Pacific Basin Conference, edited by Chang-Ha Lee (World Scientific, Singapore, 2003) pp. 136.

    Google Scholar 

  79. H.S. Zhou, S.M. Zhu, M. Hibino, and I. Honma, Electrochemical capacitance of selfordered mesoporous carbon, J. Power Sources 122, 219–223 (2003).

    Article  CAS  Google Scholar 

  80. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature 412, 169–172 (2001).

    Article  CAS  Google Scholar 

  81. A.B. Fuertes, and T.A. Centeno, Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor, J. Mater. Chem. 15, 1079–1083 (2005).

    Article  CAS  Google Scholar 

  82. E. Terres, B. Panella, T. Hayashi, Y.A. Kim, M. Endo, J.M. Dominguez, M. Hirscher, H. Terrones, and M. Terrones, Hydrogen storage in spherical nanoporous carbons, Chem. Phys. Lett. 403, 363–366 (2005).

    Article  CAS  Google Scholar 

  83. L.C. Chen, R.K. Singh, and P.A. Webley, Synthesis, characterization and hydrogen storage on ordered carbon adsorbents, Stud. Surf. Sci. Catal. 156, 603–608 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

JARONIEC, M. (2006). DESIGN, SYNTHESIS AND CHARACTERIZATION OF ORDERED MESOPOROUS MATERIALS FOR ENVIRONMENTAL APPLICATIONS. In: Loureiro, J.M., Kartel, M.T. (eds) Combined and Hybrid Adsorbents. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5172-7_2

Download citation

Publish with us

Policies and ethics