Skip to main content

CARBONACEOUS MATERIALS AS DESULFURIZATION MEDIA

  • Conference paper
Combined and Hybrid Adsorbents

Part of the book series: NATO Security through Science Series ((NASTC))

Abstract

Activated carbon-based materials have proven to work efficiently as adsorbents of sulfur containing species such as hydrogen sulfide, sulfur dioxide, methyl mercaptans from gas phase. This is owing to their surface feature such as functional groups, ash constituents, and high volume of small pores. In the pore system, sulfur containing species are oxidized to either elemental sulfur, sulfur dioxide or dimethyldisulfide depending on the chemistry of the species to be removed. Oxygen and nitrogen containing functional groups and catalytic metals such as iron or calcium are involved in this process. Presence of water film ensures sufficient conditions for dissociation providing that the local pH of the surface is greater than pKa of the adsorbate. In this brief review the emphasis is placed on the role of activated carbons surfaces, either unmodified or modified in the processes of adsorption and catalytic oxidation of sulfur containing pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. I.V. Babich, and J.A. Moulijn, Science and technology of novel processes for deep desulfurization oil refinery streams: a review, Fuel 82, 607–631(2003).

    Article  CAS  Google Scholar 

  2. Ch. Song, An overview of new approaches to deep defulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catalysis Today 86, 211–263 (2003).

    Article  CAS  Google Scholar 

  3. D. Stirling, The Sulfur Problem: Cleaning up Industrial Feedstocks (RCS, Cambridge, 2000).

    Google Scholar 

  4. R.C. Bansal, J.B. Donnet, and F. Stoeckli, Active Carbon (Marcel Dekker, New York, 1988).

    Google Scholar 

  5. C.A. Leon y Leon, and L.R. Radovic, in: Chemistry and Physics of Carbon; Vol. 24, edited by P.A. Thrower (M. Dekker, New York, 1992), pp. 213–310.

    Google Scholar 

  6. A.Turk, S. Sakalis, J. Lessuck, H., Karamitsos, and O. Rago, Ammonia injection enhances capacity of activated carbon for hydrogen sulfide and methyl mercaptan, Environ. Sci. Technol. 33, 1242–1245 (1989).

    Article  Google Scholar 

  7. A. Turk, K. Mahmood, and J. Mozaffari, Activated carbon for air purification in New York City’s sewage treatment plants, Wat.Sci. Tech. 27, 121–126 (1993).

    CAS  Google Scholar 

  8. A. Turk, T. J. Bandosz, in: Odours in Wastewater Treatment: Measurement, Modeling and Control, edited by R.M. Stuetz and F-B. Frechen, (IWA, London, 2000), pp. 354–364.

    Google Scholar 

  9. T.J. Bandosz, A. Bagreev, F. Adib, and A.Turk, Unmodified versus causticsimpregnated carbons for control of hydrogen sulfide emissions from sewage treatment plants, Environ. Sci. Technol. 34, 1069–1074 (2000).

    Article  CAS  Google Scholar 

  10. R. Yan, D.T. Liang, L. Tsen, and J.H. Tay, Kinetics and mechanisms of H2S adsorption by alkaline activated carbon, Environ. Sci. Technol 36, 4460–4466 (2002).

    Article  CAS  Google Scholar 

  11. H-L. Chiang, J-H. Tsai, C-L. Tsai, and Y-C. Hsu, Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S and CH3SH gas, Sep. Sci. Technol. 35, 903–918 (2000).

    Article  CAS  Google Scholar 

  12. A. Bagreev, and T. J. Bandosz, A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons, Ind. Eng. Chem. Res. 41, 672–679 (2002).

    Article  CAS  Google Scholar 

  13. ASTM Standards, Vol. 15.01, Refractories; Carbon and Graphite Products; Activated Carbon; Advanced Ceramics, ASTM D6646-01, 1998.

    Google Scholar 

  14. T.J. Bandosz, On the adsorption/oxidation of hydrogen sulfide on activated carbons, J. Colloid Interface Sci. 246 , 1–20 (2002).

    Article  CAS  Google Scholar 

  15. J. Przepiorski, and A. Oya, K2CO3-loaded deodorizing activated carbon fibre against H2S gas: factors influencing the deodorizing efficiency and the regeneration method, J. Mat. Sci. Lett. 17, 679–682 (1998).

    Article  CAS  Google Scholar 

  16. J. Przepiorski, S. Yoshida, and A. Oya, Structure of K2CO3-loaded activated carbon fiber and its deodorization ability against H2S gas, Carbon 37, 1881–1890 (1999).

    Article  CAS  Google Scholar 

  17. I. Coskun, and E. L. Tollefson, Oxidation of low concentrations of hydrogen sulfide over activated carbons, Can. J. Chem. Eng. 58, 72–76 (1986).

    Google Scholar 

  18. M. Steijns, and P. Mars, Catalytic oxidation of hydrogen sulfide. Influence of pore structure and chemical composition of various porous substances, Ind. Eng. Chem. Prod. Res. Dev. 16, 35–41 (1977).

    Article  CAS  Google Scholar 

  19. T.K. Ghosh, and E.L. Tollefson, A continous process for recovery of sulfur from natural gas containing low concentrations of hydrogen sulfide, Can. J. Chem. Eng. 64, 960–968 (1986).

    Article  CAS  Google Scholar 

  20. T.K. Ghosh, and E.L. Tollefson, Kinetics and reaction mechanism of hydrogen sulfide oxidation over activated carbon in the temperature range of 125–200 °C, Can. J. Chem. Eng. 64, 969–976 (1986).

    Article  CAS  Google Scholar 

  21. A.K. Dalai, M. Majumadar, A. Chowdhury, and E.L. Tollefson, The effects of pressure and temperature on the catalytic oxidation of hydrogen sulfide in natural gas and regeneration of the catalysts to recover the sulfur produced, Can. J. Chem. Eng. 71, 75–82 (1993).

    CAS  Google Scholar 

  22. A. Yang, E.L Tollefson, and A.K. Dalai, Oxidation of low concentrations of hydrogen sulphide: process optimization and kinetics studies, Can. J. Chem. Eng. 76, 76–86 (1998).

    Article  CAS  Google Scholar 

  23. A.K. Dalai, and E.L. Tollefson, Kinetics and reaction mechanism of catalytic oxidation of low concentrations of hydrogen sulfide in natural gas over activated carbon, Can. J. Chem. Eng. 64, 902–914 (1986).

    Google Scholar 

  24. A.K. Dalai, A. Majumdar, and E.L. Tollefson, Low temperature catalytic oxidation of hydrogen sulfide in sour produced wastewater using activated carbon catalysts, Environ. Sci. Technol. 33, 2241–2246 (1999).

    Article  CAS  Google Scholar 

  25. V. Meeyoo, D.L. Trimm, and N.W. Cant, Adsorption-reaction processes for the removal of hydrogen sulphide from gas streams, J. Chem. Tech. Biotechnol. 68, 411–416 (1997).

    Article  CAS  Google Scholar 

  26. M. Steijns, F. Derks, A. Verloop, and P. Mars, The mechanism of the catalytic oxidation of hydrogen sulfide. II Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur, J. Catal. 42, 87–95 (1976).

    Article  CAS  Google Scholar 

  27. M. Steijns, P. Koopman, B. Nieuwenhuijse, and P. Mars, The mechanism of the catalytic oxidation of hydrogen sulfide. III. An electron spin resonance study of the sulfur catalyzed oxidation of hydrogen sulfide, J. Catalysis 42, 96–106 (1976).

    Article  CAS  Google Scholar 

  28. M. Steijns, and P. Mars, The role of sulfur trapped in micropores in the catalytic partial oxidation of hydrogen sulfide with oxygen, J. Catalysis 35, 11–17 (1974).

    Article  CAS  Google Scholar 

  29. J. Klein, and K-D. Henning, Catalytic oxidation of hydrogen sulphide on activated carbons, Fuel 63, 1064–1067 (1984).

    Article  CAS  Google Scholar 

  30. K. Hedden, L. Humber, and B.R. Rao, Adsorptive reinigung von schwefel was ser stoffhaltigen abgasen, VDI-Bericht Nr. 253 S. 37/42, VDI-Verlag, 1976.

    Google Scholar 

  31. H. Katoh, I. Kuniyoshi, M. Hirai, and M. Shoda, Studies of the oxidation mechanism of sulphur-containing gases on wet activated carbon fibre, Appl. Catal. B: Environmental 6, 255–262 (1995).

    Article  CAS  Google Scholar 

  32. S. Tanada, T. Kita, K. Boki, and Y. Kozaki, Preparation of narrow pores carbon suitable for hydrogen sulfide adsorption, J. Environ. Sci. Health A20, 87–96 (1985).

    Article  CAS  Google Scholar 

  33. J. Choi, M. Hirai, and M Shoda, Catalytic oxidation of hydrogen sulphide by air over an activated carbon fibre, App. Catal. A, 79, 241–248 (1991)

    Article  CAS  Google Scholar 

  34. R. Sreeramamurthy, and P.G. Menon, Oxidation of H2S on active carbon catalysts, J. Catalysis 37, 287–296 (1975).

    Article  CAS  Google Scholar 

  35. A. Primavera, A. Trovarelli, P. Andreussi, and G. Dolcetti, The effect of water in the low-temperature catalytic oxidation of hydrogen sulfide to sulfur over activated carbon, Appl. Catal. A: Gen. 173, 185–192 (1998).

    Article  CAS  Google Scholar 

  36. A.N. Kaliva, and J. W. Smith, Oxidation of low concentrations of hydrogen sulfide by air on a fixed activated carbon bed, Can. J. Chem. Eng. 61, 208–212 (1983).

    CAS  Google Scholar 

  37. L.M. Le Lauch, A. Subrenat, and P. Le Cloirec, Hydrogen sulfide adsorption and oxidation onto activated carbon cloth: applications to odorous gaseous emission treatments, Langmuir 19, 10869–10877 (2003).

    Article  CAS  Google Scholar 

  38. S.V. Mikhalovsky, and Yu.P. Zaitsev, Catalytic properties of activated carbons I. Gas- Phase oxidation of hydrogen sulphide, Carbon 35, 1367–1374 (1997).

    Article  CAS  Google Scholar 

  39. T.J. Bandosz, Effect of pore structure and surface chemistry of virgin activated carbon on removal of hydrogen sulfide, Carbon 37, 483–491 (1999).

    Article  CAS  Google Scholar 

  40. F. Adib, A. Bagreev, and T. J. Bandosz, Analysis of the relationship between H2S removal capacity and surface properties of unmodified activated carbons, Environ. Sci. Technol. 34, 686–692 (2000)

    Article  CAS  Google Scholar 

  41. F. Adib, A. Bagreev, and T.J. Bandosz, Effect of surface characteristics of wood based activated carbons on removal of hydrogen sulfide, J. Coll. Interface Sci. 214, 407–415 (1999).

    Article  CAS  Google Scholar 

  42. F. Adib, A. Bagreev, and T.J. Bandosz, Effect of pH and surface chemistry on the mechanism of H2S removal by activated carbons, J. Coll. Interface Sci. 216, 360–369 (1999).

    Article  CAS  Google Scholar 

  43. F. Adib, A. Bagreev, and T.J. Bandosz, On the possibility of regeneration of unimpregnated activated carbons used as hydrogen sulfide adsorbents, Ind. Eng. Chem. Res. 39, 2439–2446 (2000).

    Article  CAS  Google Scholar 

  44. A. Bagreev, H. Rahman, and T.J. Bandosz, Wood-based activated carbons as adsorbents of hydrogen sulfide: a study of adsorption and water regeneration process, Ind. Eng. Chem. Res. 39, 3849–3855 (2000).

    Article  CAS  Google Scholar 

  45. A. Bagreev, H. Rahman, and T.J. Bandosz, Study of H2S adsorption and water regeneration of coconut-based activated carbon, Environ. Sci. Technol. 34, 4587–4592 (2000).

    Article  CAS  Google Scholar 

  46. A. Bagreev, F. Adib and T.J. Bandosz, Initial heats of H2S adsorption on activated carbons: effect of surface features, J. Coll. Interface Sci. 219, 327–332 (1999).

    Article  CAS  Google Scholar 

  47. A. Bagreev, F. Adib, and T.J. Bandosz, pH of the activated carbon surface as an indication for its suitability for removal of hydrogen sulfide from wet air streams, Carbon 39, 1987–1905 (2001).

    Google Scholar 

  48. A. Bagreev., and T.J. Bandosz, H2S adsorption/oxidation on unmodified activated carbons: importance of prehumidification, Carbon 39, 2303–2311 (2001).

    Article  CAS  Google Scholar 

  49. R.A. Hayden, Process for making catalytic carbon, U.S. Patent 5,444,031, (1995).

    Google Scholar 

  50. A. Bagreev, J.A. Menendez, I. Dukhno, Y. Tarasenko, and T.J. Bandosz, Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide, Carbon 42, 469–476 (2004).

    Article  CAS  Google Scholar 

  51. R.A. Hayden, Process for regenerating nitrogen-treated carbonaceous chars used for hydrogen sulfide removal, International patent WO 95/26230 (1995).

    Google Scholar 

  52. T.M. Matviya, and R. A. Hayden, Catalytic carbon, U.S. Patent 5,356,849 (1994).

    Google Scholar 

  53. A. Turk, E. Sakalis, O. Rago, and H. Karamitsos, Activated carbon systems for removal of light gases, Annals New York. Academy of Sciences 661, 221–228 (1992).

    CAS  Google Scholar 

  54. J.P. Boudou, M. Chehimi, E. Broniek, T. Siemieniewska, and J. Bimer, Adsorption of H2S or SO2 on an activated carbon cloth modified by ammonia treatment, Carbon 41, 1999–2007 (2003).

    Article  CAS  Google Scholar 

  55. Q.H. Yang, J.T. Zheng, Y. Li, M.Z. Wang, and B.J. Zhang, Adsorption and conversion of hydrogen sulfide over PAN-based ACF, Carbon 37, 2078–2080 (1999).

    Article  CAS  Google Scholar 

  56. F. Adib, A. Bagreev, and T.J. Bandosz, Adsorption/oxidation of hydrogen sulfide on nitrogen modified activated carbons, Langmuir 16, 1980–1986 (2000).

    Article  CAS  Google Scholar 

  57. J.R. Kastner, K.C. Das, and N.D. Melear, Catalytic oxidation of gaseous reduced sulfur compounds using coal fly ash, J. Haz. Mat. B95, 81–90 (2002).

    Article  Google Scholar 

  58. J.R. Kastner, K.C. Das, Q. Buquoi, and N.D. Melear, Low temperature catalytic oxidation of hydrogen sulfide and methanethiol using wood and coal fly ash, Environ. Sci. Technol. 37, 2568–2574 (2003).

    Article  CAS  Google Scholar 

  59. M.P. Cal, B.W. Strickler, and A.A. Lizzio, High temperature hydrogen sulfide adsorption on activated carbon. I. Effect of gas composition and metal addition, Carbon 38, 1757–1765 (2000).

    Article  CAS  Google Scholar 

  60. A. Bagreev, and T.J. Bandosz, On the mechanism of hydrogen sulfide adsorption/oxidation on catalytic carbons, Ind. Eng. Chem. Res. 44, 530–538 (2005).

    Article  CAS  Google Scholar 

  61. R.C. Bansal, J.B. Donnet, and F. Stoeckli. Active Carbon. (Marcel Dekker, New York, 1988).

    Google Scholar 

  62. I.I. Salame, and T.J. Bandosz, Study of water adsorption on activated carbons with different degrees of surface oxidation, J. Coll. Interface Sci. 210, 367–374 (1999).

    Article  CAS  Google Scholar 

  63. I.I. Salame, and T.J. Bandosz, Revisiting the effect of surface chemistry on adsorption of water on activated carbons, J. Phys. Chem. 103, 3877–3884 (1999).

    CAS  Google Scholar 

  64. A. Bagreev, S. Bashkova, D.C. Locke, and T.J. Bandosz, Sewage sludge derived materials as efficient adsorbents for removal of hydrogen sulfide, Environ. Sci. Technol. 35, 1537–1543 (2001).

    Article  CAS  Google Scholar 

  65. J. Rodriguez-Mirasol, T. Cordero, and J.J. Rodriguez, Effect of oxygen on the adsorption of SO2 on activated carbon, Abstract of 23rd Biennial Conference on Carbon, 18-23 July 1997, College Park, PA, p. 376.

    Google Scholar 

  66. C. Moreno-Castilla, F. Carrasco-Marin, E. Utrera-Hidalgo, and J. Rivera-Utrilla, Activated carbons as adsorbents of sulfur dioxide in flowing air. Effect of their pore texture and surface basicity, Langmuir 9, 1378–1383 (1993).

    Article  CAS  Google Scholar 

  67. A. Lisovskii, G.E. Shter, R. Semiat, and C Aharoni, Adsorption of sulfur dioxide by active carbon treated by nitric acid: II Effect of preheating on the adsorption properties, Carbon 35, 1645–1648 (1997).

    Article  CAS  Google Scholar 

  68. P. Davini, SO2 adsorption by activated carbons with various burnoffs obtained from bituminous coal, Carbon 39, 1387–1393 (2001).

    Article  CAS  Google Scholar 

  69. L. Mochida, S. Miyamoto, K. Kuroda, S.I. Kawano, S. Yatsunami, Y. Korai, A. Yatsutake, and M. Yashikawa, Adsorption and adsorbed species of SO2 during its oxidative removal over pitch-based activated carbon fibers, Energy Fuels 13, 369–373 (1999).

    Article  CAS  Google Scholar 

  70. P. Davini, Adsorption and desorption of SO2 on active carbon: the effect of surface basic groups, Carbon 28, 565–571 (1990).

    Article  CAS  Google Scholar 

  71. A. Lisovskii, R. Semiat, and C. Aharoni, Adsorption of sulfur dioxide by active carbon treated by nitric acid: I Effect of the treatment on adsorption of SO2 and Extractability of the acid formed, Carbon 35, 1639–1643 (1997).

    Article  CAS  Google Scholar 

  72. C.A. Anurov, Physicochemical aspects of the adsorption of sulfur dioxide by carbon adsorbents (Uspekhi Khimii) Russian Chemical Reviews 65, 663–676 (1996).

    Article  Google Scholar 

  73. E. Raymundo-Piñero, D. Cazola-Amorós, C. Salinas-Martinez de Lecea, and A. Linares- Solano, Factors controlling the SO2 removal by porous carbons: relevance of the SO2 oxidation steep, Carbon 38, 335–344. (2000).

    Article  Google Scholar 

  74. M. Molina-Sabio, M.A. Muñecas, F. Rodriguez-Reinoso, and B. McEnaney, Adsorption of CO2 and SO2 on activated carbons with a wide range of micropore size distribution, Carbon 33, 1777–1782 (1995).

    Article  CAS  Google Scholar 

  75. M.A. Daley, C.I. Mangun, J.A. DeBarr, S. Riha, A.A. Lizzio, G.L. Donnals, and J. Economy, Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFS) Carbon 35, 411–417 (1997).

    Article  CAS  Google Scholar 

  76. A.A. Lizzio, and J.A. DeBarr, Mechanism of SO2 removal by carbon, Energy Fuels 11, 284–291 (1997).

    Article  CAS  Google Scholar 

  77. B. Rubio, and M.T. Izquierdo, Influence of low-rank coal char properties on their SO2 removal capcity from flue gases: I non-activated chars. Carbon 35, 100–1011 (1997).

    Article  Google Scholar 

  78. B. Rubio, M.T. Izquierdo, and A.M. Mastral, Influence of low-rank coal char properties on their SO2 removal capacity from flue gases. 2. Activated chars, Carbon 36, 263–268 (1998).

    Article  CAS  Google Scholar 

  79. I. Mochida, Y. Korai, M. Shirahama, S. Kawano, T. Hada, Y. Seo, M. Yoshikawa, and A. Yasutake, Removal of SOx and NOx over activated carbon fibers, Carbon 38, 227–239 (2000).

    Article  CAS  Google Scholar 

  80. P. Davini, and G. Stoppato, SO2 adsorption on active carbons: the effect of certain metal compounds, Abstract of 23rd Biennial Conference on Carbon, 18-23 July 1997, College Park, PA, p. 316.

    Google Scholar 

  81. M.C. Roman, T. Takarada, Y. Suzuki, and A. Linares, SO2 interaction with a Caexchanged- coal, Abstract of 23rd Biennial Conference on Carbon, 18-23 July 1997, College Park, PA, p. 324.

    Google Scholar 

  82. A. Bagreev, S. Bashkova, and T.J. Bandosz, Adsorption of SO2 on activated carbons: the effect of nitrogen functionality and pore sizes, Langmuir 18, 1257–1264 (2002).

    Article  CAS  Google Scholar 

  83. Z-M. Wang, and K. Kaneko, Effect of pore width on micropore filling mechanism of S02 in carbon micropores, J. Phys. Chem. B 102, 2863–2868 (1998).

    Article  CAS  Google Scholar 

  84. Y. Kawabuchi, S. Sotowa, K. Kuroda, S. Kawano, D. Whitehurst, and I. Mochida, Preparation of active carbon fiber with basic properties, Abstracts, Int. Conf. on Carbon, Carbon’96, Newcastle, UK, 1996, p.431.

    Google Scholar 

  85. J.K. Lee, H.J. Shim, J.C. Lim, G.J. Choi, Y.D. Kim, B. Minand, and D. Park. Influence of tension during oxidative stabilization on SO2 adsorption characteristics of polyacrylonitrile (PAN) based activated carbon fibers, Carbon 35, 837–843 (1997).

    Article  CAS  Google Scholar 

  86. G.Q. Lu, and D.D. Do, Retention of sulfur dioxide as sulfuric acid by activated coal reject char, Sep. Technol. 3, 106–110. (1993).

    Article  CAS  Google Scholar 

  87. S. Bashkova, A. Bagreev, D.C. Locke, and T.J. Bandosz, Adsorption of SO2 on sewage sludge-derived materials, Environ. Sci. Technol. 35, 3263–3269 (2001).

    Article  CAS  Google Scholar 

  88. C-S. Ho, and S-M. Shih, Ca(OH) 2/fly ash sorbents for SO2 removal, Ind. Eng. Chem. Res. 31, 1130–1135 (1992).

    Article  CAS  Google Scholar 

  89. A.K. Dalai, E.L. Tollefson, A. Yang, and E. Sasaoka, Oxidation of methyl mercaptan over an activated carbon in a fixed-bed reactor, Ind. Eng. Chem. Res. 36, 4726–4733 (1997).

    Article  CAS  Google Scholar 

  90. H-L. Chiang, J-H. Tsai, C-L. Tsai, and Y-C. Hsu, Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S and CH3SH gas, Sep. Sci. Technol. 35, 903–918 (2000).

    Article  CAS  Google Scholar 

  91. C.S. Shin, K.H. Kim, S.H. Yu, and S.K. Ryu, Adsorption of methyl mercaptan and hydrogen sulfide on the impregnated activated carbon fiber and activated carbon, presented at Fundamentals of Adsorption 7, Nagasaki, Japan, May 20–25, 2001.

    Google Scholar 

  92. S. Bashkova, A. Bagreev, and T.J. Bandosz, Adsorption of methyl mercaptan on activated carbons, Environ. Sci. Technol. 36, 2777–2782 (2002).

    Article  CAS  Google Scholar 

  93. S. Bashkova, A. Bagreev, and T.J. Bandosz, Effects of surface characteristics on adsorption of methyl mercaptan on activated carbons, Ind. Eng. Chem. Res. 41, 4346–4352 (2002).

    Article  CAS  Google Scholar 

  94. A. Bagreev, S. Bashkova, and T.J. Bandosz, Dual role of water in the process of methyl mercaptan adsorption on activated carbons, Langmuir 18, 8553–8559 (2002).

    Article  CAS  Google Scholar 

  95. S. Bashkova, A. Bagreev, and T.J. Bandosz, Adsorption/oxidation of CH3SH on activated carbon containing nitrogen, Langmuir 19, 6115–6121 (2003).

    Article  CAS  Google Scholar 

  96. S. Bashkova, A. Bagreev, and T.J. Bandosz, Catalytic properties of activated carbon surface in the process of adsorption/oxidation of methyl mercaptan, Catalysis Today 99, 323–328 (2005).

    Article  CAS  Google Scholar 

  97. A. Bagreev, J.A. Menendez, I. Dukhno, Y. Tarasenko, and T.J. Bandosz, Adsorption of methyl mercaptan on nitrogen modified bituminous coal-based activated carbon, Carbon 43, 195–213 (2005).

    Article  CAS  Google Scholar 

  98. V.V. Strelko, V.S. Kuts, and P.A. Thrower, On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of electrons in electron transfer reactions, Carbon 38, 1499–1503 (2000).

    Article  CAS  Google Scholar 

  99. C.L. McCallum, T.J. Bandosz, S.C. McGrother, E.A. Muller, and K.E. Gubbins, A molecular model for adsorption of water on activated carbon: comparison of simulation and experiment, Langmuir 15, 533–544 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

BANDOSZ, T.J. (2006). CARBONACEOUS MATERIALS AS DESULFURIZATION MEDIA. In: Loureiro, J.M., Kartel, M.T. (eds) Combined and Hybrid Adsorbents. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5172-7_16

Download citation

Publish with us

Policies and ethics