Skip to main content

MORPHOLOGY AND SURFACE CHEMISTRY OF CHEMICALLY TREATED ACTIVATED CARBONS

  • Conference paper
Combined and Hybrid Adsorbents

Part of the book series: NATO Security through Science Series ((NASTC))

  • 1415 Accesses

Abstract

Microporous activated carbons were prepared from poly(ethyleneterephthalate). This carbon was functionalized to different degrees by cold and hot nitric acid treatment combined with subsequent heating in inert atmosphere to obtain samples with different surface chemistry. According to studies using complementary techniques (e.g., low temperature nitrogen adsorption or small angle X-ray scattering, SAXS) the greatest reduction in the surface area due to the treatment is 75 %, but the pore size distribution in the micropore range is hardly affected. The surface chemistry was characterized in nonaqueous (X-ray photoelectron spectroscopy, XPS) and aqueous medium (pH, pHPZC, Boehm titration). The importance of the surface chemistry is illustrated in standard SAXS combined with contrast variation, as well as in a wide variety of adsorption processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. S. Biniak, G. Szymanski, J. Siedlewski, and A. Swiatkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon 35(12), 1799–1810 (1997).

    Article  CAS  Google Scholar 

  2. Y. J. Lee, Y. Uchiyama, and L. R. Radovic, Effects of boron doping in low- and highsurface- area carbon powders, Carbon 42(11), 2233–2244 (2004).

    Article  CAS  Google Scholar 

  3. V. V. Strelko, V. S. Kuts, and P. A. Thrower, On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions, Carbon 38(10), 1499–1503 (2000).

    Article  CAS  Google Scholar 

  4. A. Schenk, B. Winter, C. Lutterloh, J. Biener, U. A. Schubert, and J. Kueppers, The origin of reduced chemical erosion of graphite based materials induced by boron doping, J. Nucl. Mater. 220–222, 767–770 (1995).

    Article  Google Scholar 

  5. Y. J. Lee, H. J. Joo, and L. R. Radovic, Preferential distribution and oxidation inhibiting/catalytic effects of boron in carbon fiber reinforced carbon (CFRC) composites, Carbon 41(13), 2591–2600 (2003).

    Article  CAS  Google Scholar 

  6. L. R. Radovic, M. Karra, K. Skokova, and P. A. Thrower, The role of substitutional boron in carbon oxidation, Carbon 36(12), 1841–1854 (1998).

    Article  CAS  Google Scholar 

  7. L. E. Jones, and P. A. Thrower, The effect of boron on carbon fiber microstructure and reactivity, J. Chim. Phys. 84(11–12), 1431–1438 (1987).

    CAS  Google Scholar 

  8. S. G. Oh, and N. M. Rodriguez, In situ electron microscopy studies of the inhibition of graphite oxidation by phosphorus, J. Mater. Res. 8(11), 2879–2888 (1993).

    CAS  Google Scholar 

  9. Y. J. Lee, and L. R. Radovic, Oxidation inhibition effects of phosphorus and boron in different carbon fabrics, Carbon 41(10), 1987–1997 (2003).

    Article  CAS  Google Scholar 

  10. H. B. Park, and Y. M. Lee, Pyrolytic carbon-silica membrane: a promising membrane material for improved gas separation, J. Membrane Sci. 213(1–2), 263–272 (2003).

    Article  CAS  Google Scholar 

  11. J. F. Yang, G. J. Zhang, N. Kondo, and T. Ohji, Synthesis and properties of porous Si3N4/SiC nanocomposites by carbothermal reaction between Si3N4 and carbon, Acta Mater. 50(19), 4831–4840 (2002).

    Article  CAS  Google Scholar 

  12. C. A. Leony Leon, and L. R. Radovic, in: Chemistry and Physics of Carbon Vol. 24, edited by P. A. Thrower (Marcel Dekker Press, New York, 1994), pp. 213–310.

    Google Scholar 

  13. L. R. Radovic, in: Surface Chemistry of Activated Carbon Materials: State of the Art and Implications for Adsorption, Surfaces of Nanoparticles and Porous Materials, edited by J. A. Schwarz and C. I. Contescu (Marcel Dekker, New York, 1999), pp. 529–565.

    Google Scholar 

  14. F. Kapteijn, J. A. Moulijn, S. Matzner, and H. P. Boehm, The development of nitrogen functionality in model chars during gasification in CO2 and O2, Carbon 37(7), 1143–1150 (1999).

    Article  CAS  Google Scholar 

  15. H. P. Boehm, in: Advances in Catalysis Vol. 16, edited by D. D. Eley, H. Pines, and P. B. Weisz, (Academic Press, New York, 1966), pp. 179–274.

    Google Scholar 

  16. M. V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, and F. Carrasco-Marin, On the characterization of acidic and basic surface sites on carbons by various techniques, Carbon 37(8), 1215–1221 (1999).

    Article  CAS  Google Scholar 

  17. E. Papirer, S. Li, and J. B. Donnet, Contribution to the study of basic surface groups on carbons, Carbon 25(2), 243–247 (1987).

    Article  CAS  Google Scholar 

  18. A. Bismarck, C. Wuertz, and J. Springer, Basic surface oxides on carbon fibers, Carbon 37(7), 1019–1027 (1999).

    Article  CAS  Google Scholar 

  19. D. Suárez, J. A. Menéndez, E. Fuente, and M. A. Montes-Morán, Contribution of pyrone-type structures to carbon basicity: an ab initio study, Langmuir 15(11), 3897–3904 (1999).

    Article  Google Scholar 

  20. A. Contescu, M. Vass, C. Contescu, K. Putyera, and J.A. Schwarz, Acid buffering capacity of basic carbons revealed by their continuous pK distribution, Carbon, 36(3), 247–258 1998).

    Article  CAS  Google Scholar 

  21. T. J Bandosz, M. J Biggs, K. E. Gubbins, Y. Hattorl, T. Iiyama, K. Kaneko, J. Pikunic, and K. T. Thomson, in Chemistry and Physics of Carbon Vol. 28, edited by L. R. Radovic (Marcel Dekker Press, New York, 2003), pp. 41.

    Google Scholar 

  22. K. László, and E. Geissler, Surface chemistry and contrast-modified SAXS in polymerbased activated carbons, Carbon, submitted.

    Google Scholar 

  23. K. László, Characterization and adsorption properties of polymer based microporous carbons with different surface chemistry, Micropor. Mesopor. Mat. 80(1–3), 205–211 (2005).

    Article  Google Scholar 

  24. K. László, A. Bóta, and L. G. Nagy, Characterization of activated carbons from waste materials by adsorption from aqueous solutions, Carbon 35(5), 593–598 (1997).

    Article  Google Scholar 

  25. K. László, K. Marthi, C. Rochas, F. Ehrburger-Dolle, F. Livet, and E. Geissler, Morphological investigation of chemically treated PET based activated carbons, Langmuir 20(4), 1321–1328 (2004).

    Article  Google Scholar 

  26. K. László, O. Czakkel, K. Josepovits, C. Rochas, and E. Geissler, Influence of surface chemistry on the SAXS response of polymer-based activated carbons, Langmuir 21(18), 8443–8451 (2005).

    Article  Google Scholar 

  27. K. László, E. Tombácz, and K. Josepovits, Effect of activation on the surface chemistry of carbons from polymer precursors, Carbon 39(8), 1217–1228 (2001).

    Article  Google Scholar 

  28. J. D. F. Ramsay, Applications of neutron scattering in investigations of adsorption processes in porous materials, Pure & Appl. Chem. 65(10), 2169–2174 (1993).

    CAS  Google Scholar 

  29. M. M. Antxustegi, P. J. Hall, and J. M. Calo, Development of porosity in Pittsburgh no. 8 coal char as investigated by contrast-matching small-angle neutron scattering and gas adsorption techniques, Energ. Fuel. 12(3), 542–546 (1998).

    Article  CAS  Google Scholar 

  30. K. László, and A. Szűcs, Surface characterization of polyethyleneterephthalate (PET) based activated carbon and the effect of pH on its adsorption capacity from aqueous phenol and 2,3,4-trichlorophenol solutions, Carbon 39(13), 1945–1953 (2001).

    Article  Google Scholar 

  31. K. László, Adsorption from aqueous phenol and aniline solutions on activated carbons with different surface chemistry, Colloid. Surface. A 265(1–3), 32–39 (2005).

    Article  Google Scholar 

  32. K. László, P. Podkościelny, and A. Dąbrowski, Heterogeneity of activated carbons with different surface chemistry in adsorption of phenol from aqueous solutions, Appl. Surf. Sci., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

LÁSZLÓ, K. (2006). MORPHOLOGY AND SURFACE CHEMISTRY OF CHEMICALLY TREATED ACTIVATED CARBONS. In: Loureiro, J.M., Kartel, M.T. (eds) Combined and Hybrid Adsorbents. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5172-7_14

Download citation

Publish with us

Policies and ethics