Skip to main content

Abstract

The destruction of the basement membrane and extra-cellular matrix by various secreted proteinases from malignant and stromal cells is associated with tumor cell invasion and metastasis. The level of expression of these proteinases in tumor cells is associated with advanced-stage tumorigenesis and poor prognosis. Degradation of many extra-cellular matrix components, such as collagen, proteoglycan, fibronectin, vitronectin and laminin facilitate the detachment of tumor cells and their invasiveness. This complex process involves a cascade of proteolytic events in which the primary step likely implicates enzyme activation by the proprotein convertases (PCs). Of the metalloproteinases activated by the PCs of which the expression has been correlated with increased local aggressiveness, metastasis and poor clinical outcome are stromelysin-3 (str-3), membrane-type MMPs (MT-MMPs), the adamalysin metalloproteinases (ADAMs), and the adamalysin metalloproteinases with thrombospondin motifs (ADAM-TS). All these MMPs possess one or two typical recognition motif for furin-like enzymes and some of them were recently proven experimentally to be cleaved and activated by these enzymes. Thus, the blockade of the activation of these MMPs by PC inhibitors may provide a novel strategy in micrometastasis treatment and prevention

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stetler-Stevenson WG, Yu AE (2001) Proteases in invasion: Matrix metalloproteinases. Semin Cancer Biol 11:143–152

    Article  PubMed  CAS  Google Scholar 

  2. Matrisian LM (1990) Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 6:121–125

    Article  PubMed  CAS  Google Scholar 

  3. Chang C, Werb Z (2001) The many faces of metalloproteases: Cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 11:S37–43

    PubMed  CAS  Google Scholar 

  4. Mueller MM, Fusenig NE (2004) Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  PubMed  CAS  Google Scholar 

  5. Schenk S, Quaranta V (2003) Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol 13:366–375

    Article  PubMed  CAS  Google Scholar 

  6. Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564

    Article  PubMed  CAS  Google Scholar 

  7. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: An overview. Mol Cell Biochem 253:269–285

    Article  PubMed  CAS  Google Scholar 

  8. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: Biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727

    Article  PubMed  CAS  Google Scholar 

  9. Noda M, Oh J, Takahashi R, Kondo S, Kitayama H, Takahashi C (2003) RECK: A novel suppressor of malignancy linking oncogenic signaling to extracellular matrix remodeling. Cancer Metastasis Rev 22:167–175

    Article  PubMed  CAS  Google Scholar 

  10. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68

    Article  PubMed  CAS  Google Scholar 

  11. Basset P, Okada A, Chenard MP, Kannan R, Stoll I, Anglard P, Bellocq JP, Rio MC (1997) Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications. Matrix Biol 15:535–541

    Article  PubMed  CAS  Google Scholar 

  12. Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. Faseb J 13:781–792

    PubMed  CAS  Google Scholar 

  13. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: Biologic activity and clinical implications. J Clin Oncol 18:1135–1149

    PubMed  CAS  Google Scholar 

  14. Smeekens SP, Steiner DF (1990) Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J Biol Chem 265:2997–3000

    PubMed  CAS  Google Scholar 

  15. Smeekens SP, Avruch AS, LaMendola J, Chan SJ, Steiner DF (1991) Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc Natl Acad Sci USA 88:340–344

    Article  PubMed  CAS  Google Scholar 

  16. Konoshita T, Gasc JM, Villard E, Takeda R, Seidah NG, Corvol P, Pinet F (1994) Expression of PC2 and PC1/PC3 in human pheochromocytomas. Mol Cell Endocrinol 99:307–314

    Article  PubMed  CAS  Google Scholar 

  17. Breslin MB, Lindberg I, Benjannet S, Mathis JP, Lazure C, Seidah NG (1993) Differential processing of proenkephalin by prohormone convertases 1(3) and 2 and furin. J Biol Chem 268:27084–27093

    PubMed  CAS  Google Scholar 

  18. Mbikay M, Sirois F, Yao J, Seidah NG, Chretien M (1997) Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br J Cancer 75:1509–1514

    PubMed  CAS  Google Scholar 

  19. Lopez de Cicco R, Watson JC, Bassi DE, Litwin S, Klein-Szanto AJ (2004) Simultaneous expression of furin and vascular endothelial growth factor in human oral tongue squamous cell carcinoma progression. Clin Cancer Res 10:4480–4488

    Article  PubMed  CAS  Google Scholar 

  20. Pei D, Weiss SJ (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375:244–247

    Article  PubMed  CAS  Google Scholar 

  21. Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OL, Chenard MP, Rio MC, Chambon P (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348:699–704

    Article  PubMed  CAS  Google Scholar 

  22. Wolf C, Chenard MP, Durand de Grossouvre P, Bellocq JP, Chambon P, Basset P (1992) Breast-cancer-associated stromelysin-3 gene is expressed in basal cell carcinoma and during cutaneous wound healing. J Invest Dermatol 99:870–872

    Article  PubMed  CAS  Google Scholar 

  23. Muller D, Wolf C, Abecassis J, Millon R, Engelmann A, Bronner G, Rouyer N, Rio MC, Eber M, Methlin G, et al. (1993) Increased stromelysin 3 gene expression is associated with increased local invasiveness in head and neck squamous cell carcinomas. Cancer Res 53:165–169

    PubMed  CAS  Google Scholar 

  24. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370:61–65

    Article  PubMed  CAS  Google Scholar 

  25. Sato H, Kinoshita T, Takino T, Nakayama K, Seiki M (1996) Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett 393:101–104

    Article  PubMed  CAS  Google Scholar 

  26. Pei D, Weiss SJ (1996) Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J Biol Chem 271:9135–9140

    Article  PubMed  CAS  Google Scholar 

  27. Maquoi E, Noel A, Frankenne F, Angliker H, Murphy G, Foidart JM (1998) Inhibition of matrix metalloproteinase 2 maturation and HT1080 invasiveness by a synthetic furin inhibitor. FEBS Lett 424:262–466

    Article  PubMed  CAS  Google Scholar 

  28. Hubbard FC, Goodrow TL, Liu SC, Brilliant MH, Basset P, Mains RE, Klein-Szanto AJ (1997) Expression of PACE4 in chemically induced carcinomas is associated with spindle cell tumor conversion and increased invasive ability. Cancer Res 57:5226–5231

    PubMed  CAS  Google Scholar 

  29. Pihlajaniemi T, Rehn M (1995) Two new collagen subgroups: Membrane-associated collagens and types XV and XVII. Prog Nucleic Acid Res Mol Biol 50:225–262

    PubMed  CAS  Google Scholar 

  30. Hopkinson SB, Baker SE, Jones JC (1995) Molecular genetic studies of a human epidermal autoantigen (the 180-kD bullous pemphigoid antigen/BP180): Identification of functionally important sequences within the BP180 molecule and evidence for an interaction between BP180 and alpha 6 integrin. J Cell Biol 130:117–125

    Article  PubMed  CAS  Google Scholar 

  31. Bergeron E, Basak A, Decroly E, Seidah NG (2003) Processing of alpha4 integrin by the proprotein convertases: Histidine at position P6 regulates cleavage. Biochem J 373:475–384

    Article  PubMed  CAS  Google Scholar 

  32. Mayer G, Boileau G, Bendayan M (2003) Furin interacts with proMT1-MMP and integrin alphaV at specialized domains of renal cell plasma membrane. J Cell Sci 116:1763–1773

    Article  PubMed  CAS  Google Scholar 

  33. Polette M, Birembaut P (1998) Membrane-type metalloproteinases in tumor invasion. Int J Biochem Cell Biol 30:1195–1202

    Article  PubMed  CAS  Google Scholar 

  34. Collier IE, Wilhelm SM, Eisen AZ, Marmer BL, Grant GA, Seltzer JL, Kronberger A, He CS, Bauer EA, Goldberg GI (1988) H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem 263:6579–6587

    PubMed  CAS  Google Scholar 

  35. Takino T, Sato H, Shinagawa A, Seiki M (1995) Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J Biol Chem 270:23013–23020

    CAS  Google Scholar 

  36. Cao J, Sato H, Takino T, Seiki M (1995) The C-terminal region of membrane type matrix metalloproteinase is a functional transmembrane domain required for pro-gelatinase A activation. J Biol Chem 270:801–805

    Article  PubMed  CAS  Google Scholar 

  37. Butler GS, Will H, Atkinson SJ, Murphy G (1997) Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem 244:653–657

    Article  PubMed  CAS  Google Scholar 

  38. Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272:2446–2451

    Article  PubMed  CAS  Google Scholar 

  39. Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ (2000) Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 149:1309–1323

    Article  PubMed  CAS  Google Scholar 

  40. Li Y, Aoki T, Mori Y, Ahmad M, Miyamori H, Takino T, Sato H (2004) Cleavage of lumican by membrane-type matrix metalloproteinase-1 abrogates this proteoglycan-mediated suppression of tumor cell colony formation in soft agar. Cancer Res 64:7058–7064

    Article  PubMed  CAS  Google Scholar 

  41. Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148:615–624

    Article  PubMed  CAS  Google Scholar 

  42. Ratnikov BI, Rozanov DV, Postnova TI, Baciu PG, Zhang H, DiScipio RG, Chestukhina GG, Smith JW, Deryugina EI, Strongin AY (2002) An alternative processing of integrin alpha(v) subunit in tumor cells by membrane type-1 matrix metalloproteinase. J Biol Chem 277:7377–7385

    Article  PubMed  CAS  Google Scholar 

  43. Endo K, Takino T, Miyamori H, Kinsen H, Yoshizaki T, Furukawa M, Sato H (2003) Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem 278:40764–40770

    Article  PubMed  CAS  Google Scholar 

  44. Nagase H, Woessner JF, Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  PubMed  CAS  Google Scholar 

  45. Rozanov DV, Deryugina EI, Ratnikov BI, Monosov EZ, Marchenko GN, Quigley JP, Strongin AY (2001) Mutation analysis of membrane type-1 matrix metalloproteinase (MT1-MMP). The role of the cytoplasmic tail Cys(574), the active site Glu(240), and furin cleavage motifs in oligomerization, processing, and self-proteolysis of MT1-MMP expressed in breast carcinoma cells. J Biol Chem 276:25705–25714

    Article  PubMed  CAS  Google Scholar 

  46. Rozanov DV, Strongin AY (2003) Membrane type-1 matrix metalloproteinase functions as a proprotein self-convertase. Expression of the latent zymogen in Pichia pastoris, autolytic activation, and the peptide sequence of the cleavage forms. J Biol Chem 278:8257–8260

    Article  PubMed  CAS  Google Scholar 

  47. Guo C, Jiang J, Elliott JM, Piacentini L (2005) Paradigmatic identification of MMP-2 and MT1-MMP activation systems in cardiac fibroblasts cultured as a monolayer. J Cell Biochem 94:446–459

    Article  PubMed  CAS  Google Scholar 

  48. Sato T, Kondo T, Fujisawa T, Seiki M, Ito A (1999) Furin-independent pathway of membrane type 1-matrix metalloproteinase activation in rabbit dermal fibroblasts. J Biol Chem 274:37280–37284

    Article  PubMed  CAS  Google Scholar 

  49. Bassi DE, Mahloogi H, Lopez De Cicco R, Klein-Szanto A (2003) Increased furin activity enhances the malignant phenotype of human head and neck cancer cells. Am J Pathol 162:439–447

    PubMed  CAS  Google Scholar 

  50. Bassi DE, Lopez De Cicco R, Mahloogi H, Zucker S, Thomas G, Klein-Szanto AJ (2001) Furin inhibition results in absent or decreased invasiveness and tumorigenicity of human cancer cells. Proc Natl Acad Sci USA 98:10326–10331

    Article  PubMed  CAS  Google Scholar 

  51. Lopez de Cicco R, Bassi DE, Zucker S, Seidah NG, Klein-Szanto AJ (2005) Human carcinoma cell growth and invasiveness is impaired by the propeptide of the ubiquitous proprotein convertase furin. Cancer Res 65:4162–4171

    Article  PubMed  CAS  Google Scholar 

  52. Mahloogi H, Bassi DE, Klein-Szanto AJ (2002) Malignant conversion of non-tumorigenic murine skin keratinocytes overexpressing PACE4. Carcinogenesis 23:565–572

    Article  PubMed  CAS  Google Scholar 

  53. Mercapide J, Lopez De Cicco R, Bassi DE, Castresana JS, Thomas G, Klein-Szanto AJ (2002) Inhibition of furin-mediated processing results in suppression of astrocytoma cell growth and invasiveness. Clin Cancer Res 8:1740–1746

    PubMed  CAS  Google Scholar 

  54. Mazzone M, Baldassarre M, Beznoussenko G, Giacchetti G, Cao J, Zucker S, Luini A, Buccione R (2004) Intracellular processing and activation of membrane type 1 matrix metalloprotease depends on its partitioning into lipid domains. J Cell Sci 117:6275–87

    Article  PubMed  CAS  Google Scholar 

  55. Okumura Y, Sato H, Seiki M, Kido H (1997) Proteolytic activation of the precursor of membrane type 1 matrix metalloproteinase by human plasmin. A possible cell surface activator. FEBS Lett 402:181–184

    CAS  Google Scholar 

  56. Monea S, Lehti K, Keski-Oja J, Mignatti P (2002) Plasmin activates pro-matrix metalloproteinase-2 with a membrane-type 1 matrix metalloproteinase-dependent mechanism. J Cell Physiol 192:160–170

    Article  PubMed  CAS  Google Scholar 

  57. Chun TH, Sabeh F, Ota I, Murphy H, McDonagh KT, Holmbeck K, Birkedal-Hansen H, Allen ED, Weiss SJ (2004) MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J Cell Biol 167:757–767

    Article  PubMed  CAS  Google Scholar 

  58. Blanchette F, Day R, Dong W, Laprise MH, Dubois CM (1997) TGFbeta1 regulates gene expression of its own converting enzyme furin. J Clin Invest 99:1974–1983

    Article  PubMed  CAS  Google Scholar 

  59. Cao J, Rehemtulla A, Pavlaki M, Kozarekar P, Chiarelli C (2005) Furin directly cleaves proMMP-2 in the trans-Golgi network resulting in a nonfunctioning proteinase. J Biol Chem 280:10974–10980

    Article  PubMed  CAS  Google Scholar 

  60. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E, et al. (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. Embo J 5:2503–2512

    PubMed  CAS  Google Scholar 

  61. Khatib AM, Siegfried G, Prat A, Luis J, Chretien M, Metrakos P, Seidah NG (2001) Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: Importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions. J Biol Chem 276:30686–30693

    Article  PubMed  CAS  Google Scholar 

  62. Lehmann M, Andre F, Bellan C, Remacle-Bonnet M, Garrouste F, Parat F, Lissitsky JC, Marvaldi J, Pommier G (1998) Deficient processing and activity of type I insulin-like growth factor receptor in the furin-deficient LoVo-C5 cells. Endocrinology 139:3763–3771

    Article  PubMed  CAS  Google Scholar 

  63. Long L, Navab R, Brodt P (1998) Regulation of the Mr 72,000 type IV collagenase by the type I insulin-like growth factor receptor. Cancer Res 58:3243–3247

    PubMed  CAS  Google Scholar 

  64. Zhang D, Bar-Eli M, Meloche S, Brodt P (2004) Dual regulation of MMP-2 expression by the type 1 insulin-like growth factor receptor: the phosphatidylinositol 3-kinase/Akt and Raf/ERK pathways transmit opposing signals. J Biol Chem 279:19683–19690

    Article  PubMed  CAS  Google Scholar 

  65. Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M (2002) Regulation of Raf-Akt Cross-talk. J Biol Chem 277:31099–31106

    Article  PubMed  CAS  Google Scholar 

  66. Muraoka-Cook RS, Kurokawa H, Koh Y, Forbes JT, Roebuck LR, Barcellos-Hoff MH, Moody SE, Chodosh LA, Arteaga CL (2004) Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 64:9002–9011

    Article  PubMed  CAS  Google Scholar 

  67. Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, Sharif-Afshar AR, Muller WJ, Moses HL (2005) Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 65:2296–2302

    Article  PubMed  CAS  Google Scholar 

  68. Tian F, DaCosta Byfield S, Parks WT, Yoo S, Felici A, Tang B, Piek E, Wakefield LM, Roberts AB (2003) Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 63:8284–8292

    PubMed  CAS  Google Scholar 

  69. Weeks BH, He W, Olson KL, Wang XJ (2001) Inducible expression of transforming growth factor beta1 in papillomas causes rapid metastasis. Cancer Res 61:7435–7443

    PubMed  CAS  Google Scholar 

  70. Muraoka-Cook RS, Dumont N, Arteaga CL (2005) Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res 11:937s–943s

    PubMed  CAS  Google Scholar 

  71. Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R (1995) Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem 270:10618–10624

    Article  PubMed  CAS  Google Scholar 

  72. Dubois CM, Blanchette F, Laprise MH, Leduc R, Grondin F, Seidah NG (2001) Evidence that furin is an authentic transforming growth factor-beta1-converting enzyme. Am J Pathol 158:305–316

    PubMed  CAS  Google Scholar 

  73. Giannelli G, Fransvea E, Marinosci F, Bergamini C, Colucci S, Schiraldi O, Antonaci S (2002) Transforming growth factor-beta1 triggers hepatocellular carcinoma invasiveness via alpha3beta1 integrin. Am J Pathol 161:183–193

    PubMed  CAS  Google Scholar 

  74. Hoshino H, Konda Y, Takeuchi T (1997) Co-expression of the proprotein-processing endoprotease furin and its substrate transforming growth factor beta1 and the differentiation of rat hepatocytes. FEBS Lett 419:9–12

    Article  PubMed  CAS  Google Scholar 

  75. McMahon S, Laprise MH, Dubois CM (2003) Alternative pathway for the role of furin in tumor cell invasion process. Enhanced MMP-2 levels through bioactive TGFbeta. Exp Cell Res 291:326–339

    Article  PubMed  CAS  Google Scholar 

  76. Peiretti F, Canault M, Deprez-Beauclair P, Berthet V, Bonardo B, Juhan-Vague I, Nalbone G (2003) Intracellular maturation and transport of tumor necrosis factor alpha converting enzyme. Exp Cell Res 285:278–285

    Article  PubMed  CAS  Google Scholar 

  77. Srour N, Lebel A, McMahon S, Fournier I, Fugere M, Day R, Dubois CM (2003) TACE/ADAM-17 maturation and activation of sheddase activity require proprotein convertase activity. FEBS Lett 554:275–283

    Article  PubMed  CAS  Google Scholar 

  78. McCulloch DR, Harvey M, Herington AC (2000) The expression of the ADAMs proteases in prostate cancer cell lines and their regulation by dihydrotestosterone. Mol Cell Endocrinol 167:11–21}

    Article  PubMed  CAS  Google Scholar 

  79. O’Shea C, McKie N, Buggy Y, Duggan C, Hill AD, McDermott E, O’Higgins N, Duffy MJ (2003) Expression of ADAM-9 mRNA and protein in human breast cancer. Int J Cancer 105:754–761

    Article  PubMed  CAS  Google Scholar 

  80. Schutz A, Hartig W, Wobus M, Grosche J, Wittekind C, Aust G (2005) Expression of ADAM15 in lung carcinomas. Virchows Arch 446:421–429

    Article  PubMed  CAS  Google Scholar 

  81. Shintani Y, Higashiyama S, Ohta M, Hirabayashi H, Yamamoto S, Yoshimasu T, Matsuda H, Matsuura N (2004) Overexpression of ADAM9 in non-small cell lung cancer correlates with brain metastasis. Cancer Res 64:4190–4196

    Article  PubMed  CAS  Google Scholar 

  82. Anders A, Gilbert S, Garten W, Postina R, Fahrenholz F (2001) Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases. Faseb J 15:1837–1839

    PubMed  CAS  Google Scholar 

  83. Loechel F, Gilpin BJ, Engvall E, Albrechtsen R, Wewer UM (1998) Human ADAM 12 (meltrin alpha) is an active metalloprotease. J Biol Chem 273:16993–16997

    Article  PubMed  CAS  Google Scholar 

  84. Lum L, Reid MS, Blobel CP (1998) Intracellular maturation of the mouse metalloprotease dis-integrin MDC15. J Biol Chem 273:26236–26247

    Article  PubMed  CAS  Google Scholar 

  85. Banyard J, Bao L, Zetter BR (2003) Type XXIII collagen, a new transmembrane collagen identified in metastatic tumor cells. J Biol Chem 278:20989–20994

    Article  PubMed  CAS  Google Scholar 

  86. Franzke CW, Tasanen K, Borradori L, Huotari V, Bruckner-Tuderman L (2004) Shedding of collagen XVII/BP180: Structural motifs influence cleavage from cell surface. J Biol Chem 279:24521–24529

    Article  PubMed  CAS  Google Scholar 

  87. Zhang D, Brodt P (2003) Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling. Oncogene 22:974–982

    Article  PubMed  CAS  Google Scholar 

  88. Stawowy P, Kallisch H, Kilimnik A, Margeta C, Seidah NG, Chretien M, Fleck E, Graf K (2004) Proprotein convertases regulate insulin-like growth factor 1-induced membrane-type 1 matrix metalloproteinase in VSMCs via endoproteolytic activation of the insulin-like growth factor-1 receptor. Biochem Biophys Res Commun 321:531–538

    Article  PubMed  CAS  Google Scholar 

  89. Roebroek AJ, Umans L, Pauli IG, Robertson EJ, van Leuven F, Van de Ven WJ, Constam DB (1998) Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development 125:4863–4876

    PubMed  CAS  Google Scholar 

  90. Roebroek AJ, Taylor NA, Louagie E, Pauli I, Smeijers L, Snellinx A, Lauwers A, Van de Ven WJ, Hartmann D, Creemers JW (2004) Limited redundancy of the proprotein convertase furin in mouse liver. J Biol Chem 279:53442–53450

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Bassi, D.E., Klein-Szanto, A.J. (2006). Proprotein Convertases, Metalloproteases and Tumor Cell Invasion. In: Khatib, AM. (eds) Regulation of Carcinogenesis, Angiogenesis and Metastasis by the Proprotein Convertases (PCs). Springer, Dordrecht. https://doi.org/10.1007/1-4020-5132-8_5

Download citation

Publish with us

Policies and ethics