Skip to main content

Abstract

Proprotein convertases (PCs) are directly responsible for the activation of protein precursors implicated in neoplasia by either the degradation of extracellular matrix and modulation of cell adhesion, growth and/or survival. These functions are crucial in the acquisition of the tumorigenic phenotype, tumor progression and metastasis. Here we discuss a number of recent findings on the role of these enzymes in the regulation of multiple cellular functions that impact on the invasive/metastatic potential of cancer cells

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson SA (1991) Growth factors and cancer. Science 254:1146–1153

    PubMed  CAS  Google Scholar 

  2. Schwartz MA (1997) Integrins, oncogenes, and anchorage independence. J Cell Biol. 139:575–578

    PubMed  CAS  Google Scholar 

  3. DeClerck YA (2000) Interactions between tumour cells and stromal cells proteolytic modification of the extracellular matrix by metalloproteinases in cancer. Eur J Cancer 36:1258–1268

    PubMed  CAS  Google Scholar 

  4. Khatib AM, Siegfried G, Chrètien M, Metrakos P, Seidah NG (2002) Proprotein convertases in tumor progression and malignancy: Novel targets in cancer therapy. Am J Pathol. (1995) 160:1921–1935

    CAS  Google Scholar 

  5. Duguay SJ, Lai-Zhang J, Steiner DF (1995) Mutational analysis of the insulin-like growth factor I prohormone processing site. J Biol Chem 270:17566–17574

    PubMed  CAS  Google Scholar 

  6. Duguay SJ, Jin Y, Stein J, Duguay AN, Gardner P, Steiner DF (1998) Post-translational processing of the insulin-like growth factor-2 precursor: Analysis of O-glycosylation and endoproteolysis. J Biol Chem 273:18443–18451

    PubMed  CAS  Google Scholar 

  7. Duguay, SJ (1991) Post-translational processing of insulin-like growth factor. Horm Metab Res 31:43–49

    Google Scholar 

  8. Campan M, Yoshizumi M, Seidah NG, Lee ME, Bianchi C, Haber E (1996) Increased proteolytic processing of protein tyrosine phosphatase mu in confluent vascular endothelial cells: The role of PC5, a member of the subtilisin family. Biochemistry 35:3797–3802

    PubMed  CAS  Google Scholar 

  9. Liu B, Amizuka N, Goltzman D, Rabbani SA (1995) Inhibition of processing of parathyroid hormone-related peptide by anti-sense furin: Effect in vitro and in vivo on rat Leydig (H-500) tumor cells. Int J Cancer 63:276–281

    PubMed  CAS  Google Scholar 

  10. Kayo T, Sawada Y, Suda M, Konda Y, Izumi T, Tanaka S, Shibata H, Takeuchi T (1997) Proprotein-processing endoprotease furin controls growth of pancreatic beta-cells. Diabetes 46:1296–1304

    PubMed  CAS  Google Scholar 

  11. Konda Y, Yokota H, Kayo T, Horiuchi T, Sugiyama N, Tanaka S, Takata K, Takeuchi T (1997) Proprotein-processing endoprotease furin controls the growth and differentiation of gastric surface mucous cells. J Clin Invest 99:1842–1851

    PubMed  CAS  Google Scholar 

  12. Siegfried G, Khatib AM, Benjannet S, Chretien M, Seidah NG (2003) The proteolytic processing of pro-platelet-derived growth factor-A at RRKR(86) by members of the proprotein convertase family is functionally correlated to platelet-derived growth factor-A-induced functions and tumorigenicity. Cancer Res 63:1458–1463

    PubMed  CAS  Google Scholar 

  13. Siegfried G, Basak A, Cromlish JA, Benjannet S, Marcinkiewicz J, Chretien M, Seidah NG, Khatib AM (2003) The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis. J Clin Invest. 111:1723–1732

    PubMed  CAS  Google Scholar 

  14. Leitlein J, Aulwurm S, Waltereit R (2001) Processing of immunosuppressive pro-TGF-beta-1,2 by human glioblastoma cells involves cytoplasmic and secreted furin-like proteases. J Immunol 166:7238–7243

    PubMed  CAS  Google Scholar 

  15. Bassi DE, Mahloogi H, Lopez De Cicco R, Klein-Szanto A (2003) Increased furin activity enhances the malignant phenotype of human head and neck cancer cells. Am J Pathol 162:439–447

    PubMed  CAS  Google Scholar 

  16. Komada M, Hatsuzawa K, Shibamoto S, Ito F, Nakayama K, Kitamura N (1993) Proteolytic processing of the hepatocyte growth factor/scatter factor receptor by furin. FEBS Lett 328:25–29

    PubMed  CAS  Google Scholar 

  17. Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, Vannelli GB, Brand R, Goldfine ID, Vigneri R (1990) Elevated insulin receptor content in human breast cancer. J Clin Invest 86:1503–1510

    PubMed  CAS  Google Scholar 

  18. Robertson BJ, Moehring JM, Moehring TJ (1993) Defective processing of the insulin receptor in an endoprotease-deficient Chinese hamster cell strain is corrected by expression of mouse furin. J Biol Chem 268:24274–24277

    PubMed  CAS  Google Scholar 

  19. Hwang JB, Hernandez J, Leduc R, Frost SC (2000) Alternative glycosylation of the insulin receptor prevents oligomerization and acquisition of insulin-dependent tyrosine kinase activity. Biochem Biophys Acta 1499:74–84

    PubMed  CAS  Google Scholar 

  20. Khatib AM, Siegfried G, Prat A, Luis J, Chretien M, Metrakos P, Seidah NG (2001) Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: Importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions. J Biol Chem 276:30686–30693

    PubMed  CAS  Google Scholar 

  21. Baserga R, Rubin R (1993) Cell cycle and growth control. Crit Rev Eukaryot Gene Expr 3:47–61

    PubMed  Google Scholar 

  22. Rodrigues GA, Park M (1994) Oncogenic activation of tyrosine kinases. Curr Opin Genet 4:15–24

    CAS  Google Scholar 

  23. Rodrigues GA, Park M (1994) Autophosphorylation modulates the kinase activity and oncogenic potential of the Met receptor tyrosine kinase. Oncogene 9:2019–2027

    PubMed  CAS  Google Scholar 

  24. Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109:877–889

    PubMed  CAS  Google Scholar 

  25. Hiscox SE, Hallett MB, Puntis MC, Nakamura T, Jiang WG (1997) Expression of the HGF/SF cancers. Cancer Invest 15:513–521

    PubMed  CAS  Google Scholar 

  26. Lahm H, Amstad P, Wyniger J, Yilmaz A, Fischer JR, Schreyer M, Givel JC (1994) Blockade of the insulin-like growth-factor-I receptor inhibits growth of human colorectal cancer cells: Evidence of a functional IGF-II-mediated autocrine loop. Int J Cancer 58:452–459

    PubMed  CAS  Google Scholar 

  27. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    PubMed  CAS  Google Scholar 

  28. Franke TF, Kaplan DR, Cantley LC (1997) PI3K: Downstream AKTion blocks apoptosis. Cell Feb 88:435–437

    CAS  Google Scholar 

  29. Ueno H, Kondo E, Yamamoto-Honda R, Tobe K, Nakamoto T, Sasaki K, Mitani K, Furusaka A, Tanaka T, Tsujimoto Y, Kadowaki T, Hirai H (2000) Association of insulin receptor substrate proteins with Bcl-2 and their effects on its phosphorylation and antiapoptotic function. Mol Biol Cell 11:735–746

    PubMed  CAS  Google Scholar 

  30. Jarpe MB, Widmann C, Knall C, Schlesinger TK, Gibson S, Yujiri T, Fanger GR, Gelfand EW, Johnson GL (1998) Anti-apoptotic versus pro-apoptotic signal transduction: Checkpoints and stop signs along the road to death. Oncogene 17:1475–1482

    PubMed  CAS  Google Scholar 

  31. Bassi DE, Lopez De Cicco R, Mahloogi H, Zucker S, Thomas G, Klein-Szanto AJ (2001) Furin inhibition results in absent or decreased invasiveness and tumorigenicity of human cancer cells. Proc Natl Acad Sci USA 98:10326–10331

    PubMed  CAS  Google Scholar 

  32. Santavicca M, Noel A, Angliker H, Stoll I, Segain JP, Anglard P, Chretien M, Seidah N, Basset P (1996) Characterization of structural determinants and molecular mechanisms involved in pro-stromelysin-3 activation by 4-aminophenylmercuric acetate and furin-type convertases. Biochem J 315:953–958

    PubMed  CAS  Google Scholar 

  33. Pei D, Weiss SJ (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375:244–247

    PubMed  CAS  Google Scholar 

  34. Yana I, Weiss SJ (2000) Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases. Mol Biol Cell 11:2387–2401

    PubMed  CAS  Google Scholar 

  35. Loechel F, Gilpin BJ, Engvall E, Albrechtsen R, Wewer UM (1998) Human ADAM 12 (meltrin α) is an active metalloprotease. J Biol Chem 273:16993–16997

    PubMed  CAS  Google Scholar 

  36. Kuno K, Kanada N, Nakashima E, Fujiki F, Ichimura F, Matsushima K (1997) Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J Biol Chem 272:556–562

    PubMed  CAS  Google Scholar 

  37. Kuno K, Terashima Y, Matsushima K (1999) ADAMTS-1 is an active metalloproteinase associated with the extracellular matrix. J Biol Chem 274:18821–18826

    PubMed  CAS  Google Scholar 

  38. Sardinha TC, Nogueras JJ, Xiong H, Weiss EG, Wexner SD, Abramson S (2000) Membrane-type 1 matrix metalloproteinase mRNA expression in colorectal cancer. Dis Colon Rectum 43:389–395

    PubMed  CAS  Google Scholar 

  39. Kitakata H, Nemoto-Sasaki Y, Takahashi Y, Kondo T, Mai M, Mukaida N (2002) Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells. Cancer Res 62:6682–6687

    PubMed  CAS  Google Scholar 

  40. Khatib AM, Auguste P, Fallavollita L, Wang N, Samani A, Kontogiannea M, Meterissian S, Brodt P (2005) Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol 167:749–759

    PubMed  CAS  Google Scholar 

  41. Kitakata H, Nemoto-Sasaki Y, Takahashi Y, Kondo T, Mai M, Mukaida N (2002) Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells. Cancer Res. 62:6682–6687

    PubMed  CAS  Google Scholar 

  42. Tozeren A, Kleinman H.K, Grant D.S, Morales D, Mercurio A.M, Byers S.W (1995) E-selectin-mediated dynamic interactions of breast- and colon-cancer cells with endothelial-cell monolayers. Int J Cancer 60:426–431

    PubMed  CAS  Google Scholar 

  43. Brodt P, Fallavollita L, Bresalier R.S, Meterissian S, Norton C.R, Wolitzky B.A (1997) Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int J Cancer 71:612–619

    PubMed  CAS  Google Scholar 

  44. Khatib AM, Fallavollita L, Wancewicz EV, Monia BP, Brodt P (2002) Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Res 62:5393–5398

    PubMed  CAS  Google Scholar 

  45. Nejjari M, Berthet V, Rigot V, Laforest S, Jacquier MF, Seidah NG, Remy L, Bruyneel E, Scoazec JY, Marvaldi J, Luis J (2004) Inhibition of proprotein convertases enhances cell migration and metastases development of human colon carcinoma HT-29 cells in a rat model. Am J Pathol 164:1925–1933

    PubMed  CAS  Google Scholar 

  46. Murakami K, Sakukawa R, Ikeda T, Matsuura T, Hasumura S, Nagamori S, Yamada Y, Saiki I (1999) Invasiveness of hepatocellular carcinoma cell lines: Contribution of membrane-type 1 matrix metalloproteinase. Neoplasia 1:424–430

    PubMed  CAS  Google Scholar 

  47. Rozanov DV, Strongin AY (2003) Membrane type-1 matrix metalloproteinase functions as a proprotein self-convertase. Expression of the latent zymogen in Pichia pastoris, autolytic activation, and the peptide sequence of the cleavage forms. J Biol Chem 278:8257–8260

    PubMed  CAS  Google Scholar 

  48. Primakoff P, Myles DG (2000) The ADAM gene family: Surface proteins with adhesion and protease activity. Trends Genet 16:83–87

    PubMed  CAS  Google Scholar 

  49. Wu E, Croucher PI, McKie N (1997) Expression of members of the novel membrane linked metalloproteinase family ADAM in cells derived from a range of haematological malignancies. Biochem Biophys Res Commun. 235:437–442

    PubMed  CAS  Google Scholar 

  50. Schlöndorff J, Blobel CP (1999) Metalloprotease-disintegrins: Modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci 112:3603–3617

    PubMed  Google Scholar 

  51. Black RA, White JM (1998) ADAMs: Focus on the protease domain. Curr Opin Cell Biol 10:564–569

    Google Scholar 

  52. Wolfsberg TG, White JM (1996) ADAMs in fertilization and development. Dev Biol 180:389–401

    PubMed  CAS  Google Scholar 

  53. Lunn CA, Fan X, Dalie B, Miller K, Zavodny PJ, Narula SK, Lundell D (1997) Purification of ADAM 10 from bovine spleen as a TNF-α convertase. FEBS Lett 400:333–335

    PubMed  CAS  Google Scholar 

  54. Koike H, Tomioka S, Sorimachi H, Saido TC, Maruyama K, Okuyama A, Fujisawa-Sehara A, Ohno S, Suzuki K, Ishiura S (1999) Membrane-anchored metalloprotease MDC9 has an alpha-secretase activity responsible for processing the amyloid precursor protein. Biochem J 343:371–375

    PubMed  CAS  Google Scholar 

  55. Nath D, Slocombe PM, Stephens PE, Warn A, Hutchinson GR, Yamada KM, Docherty AJ, Murphy G (1999) Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5beta1 integrins on different haemopoietic cells. J Cell Sci 112:579–587

    PubMed  CAS  Google Scholar 

  56. Lopez-Perez E, Zhang Y, Frank SJ, Creemers J, Seidah N, Checler F (2001) Constitutive alpha-secretase cleavage of the beta-amyloid precursor protein in the furin-deficient LoVo cell line: Involvement of the pro-hormone convertase 7 and the disintegrin metalloprotease ADAM10. J Neurochem 76:1532–1539

    PubMed  CAS  Google Scholar 

  57. Chen MS, Almeida EA, Huovila AP, Takahashi Y, Shaw LM, Mercurio AM, White JM (1999) Evidence that distinct states of the integrin alpha6beta1 interact with laminin and an ADAM. J Cell Biol 144:549–561

    PubMed  CAS  Google Scholar 

  58. Eto K, Puzon-McLaughlin W, Sheppard D, Sehara-Fujisawa A, Zhang XP, Takada Y (2000) RGD-independent binding of integrin alpha 9beta 1 to the ADAM-12 and -15 disintegrin domains mediates cell-cell interaction. J Biol Chem 275:34922–34930

    PubMed  CAS  Google Scholar 

  59. Gutwein P, Oleszewski M, Mechtersheimer S, Agmon-Levin N, Krauss K, Altevogt P (2000) Role of Src kinases in the ADAM-mediated release of L1 adhesion molecule from human tumor cells. J Biol Chem 275:15490–15497

    PubMed  CAS  Google Scholar 

  60. McCulloch DR, Harvey M, Herington AC (2000) The expression of the ADAMs proteases in prostate cancer cell lines and their regulation by dihydrotestosterone. Mol Cell Endocrinol 167:11–21

    PubMed  CAS  Google Scholar 

  61. Tortorella M, Pratta M, Liu RQ, Abbaszade I, Ross H, Burn T, Arner E (2000) The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage. J Biol Chem 275:25791–25797

    PubMed  CAS  Google Scholar 

  62. Abbaszade I, Liu RQ, Yang F, Rosenfeld SA, Ross OH, Link JR, Ellis DM, Tortorella MD, Pratta MA, Hollis JM, Wynn R, Duke JL, George HJ, Hillman MC, Jr, Murphy K, Wiswall BH, Copeland RA, Decicco CP, Bruckner R, Nagase H, Itoh Y, Newton RC, Magolda RL, Trzaskos JM, Burn TC (1999) Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem 274:23443–23450

    PubMed  CAS  Google Scholar 

  63. Matthews RT, Gary SC, Zerillo C, Pratta M, Solomon K, Arner EC, Hockfield S (2000) Brain-enriched hyaluronan binding (BEHAB)/brevican cleavage in a glioma cell line is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family member. J Biol Chem 275:22695–22703

    PubMed  CAS  Google Scholar 

  64. Kahn J, Mehraban F, Ingle G, Xin X, Bryant JE, Vehar G, Schoenfeld J, Grimaldi CJ, Peale F, Draksharapu A, Lewin DA, Gerritsen ME (2000) Gene expression profiling in an in vitro model of angiogenesis. Am J Pathol 156:1887–1900

    PubMed  CAS  Google Scholar 

  65. Tetu B, Brisson J, Lapointe H, Bernard P (1998) Prognostic significance of stromelysin 3, gelatinase A, and urokinase expression in breast cancer. Hum Pathol 29:979–985

    PubMed  CAS  Google Scholar 

  66. Santavicca M, Noel A, Angliker H, Stoll I, Segain JP, Anglard P, Chretien M, Seidah N, Basset P (1996) Characterization of structural determinants and molecular mechanisms involved in pro-stromelysin-3 activation by 4-aminophenylmercuric acetate and furin-type convertases. Biochem J 315:953–958

    PubMed  CAS  Google Scholar 

  67. Wolf C, Rouyer N, Lutz Y, et al. (1993) Stromelysin-3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumor progression. Proc Natl Acad Sci USA 90:1843–1847

    PubMed  CAS  Google Scholar 

  68. Wolf C, Chenard MP, de Grossouvre DP, et al. (1992) Breast-cancer associated stromelysin-3 gene is expressed in basal cell carcinoma and during cutaneous wound healing. J Invest Dermatol 99:870–872

    PubMed  CAS  Google Scholar 

  69. Muller D, Wolf C, Abecassis J, et al. (1993) Increased stromelysin-3 gene expression is associated with increased local invasiveness in head and neck squamous cell carcinomas. Cancer Res 53:165–169}

    PubMed  CAS  Google Scholar 

  70. Engel G, Heselmeyer K, Auer G, et al. (1994) Correlation between stromelysin-3 mRNA concentration and outcome of human breast cancer. Int J Cancer 58:830–835

    PubMed  CAS  Google Scholar 

  71. Rouyer N, Wolf C, Chenard MP, et al. (1994) Stromelysin-3 gene expression in human cancer: An overview. Invasion Metastasis 14:269–275

    PubMed  Google Scholar 

  72. Pei D, Majumdar G, Weiss SJ (1994) Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem 269:25849–25855

    PubMed  CAS  Google Scholar 

  73. Finlay TH, Tamir S, Kadner SS, et al. (1993) α 1-antitrypsin- and anchorage-independent growth of MCF-7 breast cancer cells. Endocrinology 133:996–1002

    PubMed  CAS  Google Scholar 

  74. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–37

    PubMed  CAS  Google Scholar 

  75. Springer TA (1995) Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol 57:827–872

    PubMed  CAS  Google Scholar 

  76. Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84:2101–2068

    Google Scholar 

  77. Hynes RO (1992) Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    PubMed  CAS  Google Scholar 

  78. O. Hynes (1999) Cell adhesion: Old and new questions. Trends Cell Biol 9: M33–M37

    PubMed  CAS  Google Scholar 

  79. Ruegg C, Mariotti A (2003) Vascular integrins: Pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cell Mol Life Sci 60:1135–1157

    PubMed  CAS  Google Scholar 

  80. Stupack DG, Cheresh DA (2002) Get a ligand, get a life: Integrins, signaling and cell survival. J Cell Sci 115:3729–3738

    PubMed  CAS  Google Scholar 

  81. Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120:577–585

    PubMed  CAS  Google Scholar 

  82. Giancotti FG, Mainiero F (1994) Integrin-mediated adhesion and signaling in tumorigenesis. Biochim Biophys Acta 198:47–64

    Google Scholar 

  83. Hempstead BL, Birge RB, Fajardo JE, Glassman R, Mahadeo D, Kraemer R, Hanafusa H (1994) Expression of the v-crk oncogene product in PC12 cells results in rapid differentiation by both nerve growth factor- and epidermal growth factor-dependent pathways. Mol Cell Biol 4:1964–1971

    Google Scholar 

  84. Daemi N, Thomasset N, Lissitzky JC, Dumortier J, Jacquier MF, Pourreyron C, Rousselle P, Chayvialle JA, Remy L (2000) Anti-β 4 integrin antibodies enhance migratory and invasive abilities of human colon adenocarcinoma cells and their MMP-2 expression. Int J Cancer 85:850–856

    PubMed  CAS  Google Scholar 

  85. Khatib AM, Nip J, Fallavollita L, Lehmann M, Jensen G, Brodt P (2001) Regulation of urokinase plasminogen activator/plasmin-mediated invasion of melanoma cells by the integrin vitronectin receptor αvβ 3. Int J Cancer 91:300–308

    PubMed  CAS  Google Scholar 

  86. Lehmann M, Rigot V, Seidah NG, Marvaldi J, Lissitzky JC (1996) Lack of integrin α-chain endoproteolytic cleavage in furin-deficient human colon adenocarcinoma cells LoVo. Biochem J 317:803–809

    PubMed  CAS  Google Scholar 

  87. Lissitzky JC, Luis J, Munzer JS, Benjannet S, Parat F, Chretien M, Marvaldi J, Seidah NG (2000) Endoproteolytic processing of integrin pro-α subunits involves the redundant function of furin and proprotein convertase (PC) 5A, but not paired basic amino acid converting enzyme (PACE) 4, PC5B or PC7. Biochem J 346:133–138

    PubMed  CAS  Google Scholar 

  88. Berthet V, Rigot V, Champion S, Secchi J, Fouchier F, Marvaldi J, Luis J (2000) Role of endoproteolytic processing in the adhesive and signaling functions of αvβ 5 integrin. J Biol Chem 275:33308–33333

    PubMed  CAS  Google Scholar 

  89. Mantovani A, Garlanda C, Introna M, Vecchi A (1998) Regulation of endothelial cell function by pro- and anti-inflammatory cytokines. Transplant Proc 30:4239–4243

    PubMed  CAS  Google Scholar 

  90. Pober JS, Cotran RS (1990) The role of endothelial cells in inflammation. Transplantation 50:537–544

    PubMed  CAS  Google Scholar 

  91. Balaram SK, Agrawal DK, Edwards JD (1999) Insulin like growth factor-1 activates nuclear factor-kappaB and increases transcription of the intercellular adhesion molecule-1 gene in endothelial cells. Cardiovasc Surg 7:91–97

    PubMed  CAS  Google Scholar 

  92. Ishizuka T, Takamizawa-Matsumoto M, Suzuki K, Kurita A (1999) Endothelin-1 enhances vascular cell adhesion molecule-1 expression in tumor necrosis factor α-stimulated vascular endothelial cells. Eur J Pharmacol 369:237–245

    PubMed  CAS  Google Scholar 

  93. Hayasaki Y, Nakajima M, Kitano Y, Iwasaki T, Shimamura T, Iwaki K (1996) ICAM-1 expression on cardiac myocytes and aortic endothelial cells via their specific endothelin receptor subtype 1. Biochem Biophys Res Commun 229:817–824

    PubMed  CAS  Google Scholar 

  94. McCarron R, Wang L, Stanimirovic DB, Spatz M (1993) Endothelin induction of adhesion molecule expression on human brain microvascular endothelial cells. Neurosci Lett 156:31–34

    PubMed  CAS  Google Scholar 

  95. Morisaki N, Takahashi K, Shiina R, Zenibayashi M, Otabe M, Yoshida S, Saito Y (1994) Platelet-derived growth factor is a potent stimulator of expression of intercellular adhesion molecule-1 in human arterial smooth muscle cells. Biochem Biophys Res Commun 200:612–618

    PubMed  CAS  Google Scholar 

  96. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh G (2001) VEGF stimulates expression of ICAM-1, VCAM-1 and E-selectin through nuclear factor-kappaB activation in endothelial cells. J Biol Chem 276:7614–7620

    PubMed  CAS  Google Scholar 

  97. Denault JB, Claing A, D’Orleans-Juste P, Sawamura T, Kido T, Masaki T, Leduc R (1995) Processing of proendothelin-1 by human furin convertase. FEBS Lett 362:276–280

    PubMed  CAS  Google Scholar 

  98. Lunn CA, Fan X, Dalie B, Miller K, Zavodny PJ, Narula SK, Lundell D (1997) Purification of ADAM 10 from bovine spleen as a TNFα convertase. FEBS Lett 400:333–335

    PubMed  CAS  Google Scholar 

  99. Izumi Y, Taniuchi Y, Tsuji T, Smith CW, Nakamori S, Fidler IJ, Irimura T (1995) Characterization of human colon carcinoma variant cells selected for sialyl Lex carbohydrate antigen: Liver colonization and adhesion to vascular endothelial cells. Exp Cell Res 216:215–221

    PubMed  CAS  Google Scholar 

  100. Bevilacqua MP, Nelson RM (1993) Selectins: Selectins. J Clin Invest 91:379–387

    PubMed  CAS  Google Scholar 

  101. Lasky LA, Singer MS, Dowbenko D, Imai Y, Henzel WJ, Grimley C, Fennie C, Gillett N, Watson SR, Rosen SD (1992) An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 69:927–38

    PubMed  CAS  Google Scholar 

  102. Iwai K, Ishikura H, Kaji M, Sugiura H, Ishizu A, Takahashi C, Kato H, Tanabe T, Yoshiki T (1993) Importance of E-selectin (ELAM-1) and sialyl Lewis(a) in the adhesion of pancreatic carcinoma cells to activated endothelium. Int J Cancer 54:972–977

    PubMed  CAS  Google Scholar 

  103. Mannori G, Santoro D, Carter L, Corless C, Nelson RM, Bevilacqua MP (1997) Inhibition of colon carcinoma cell lung colony formation by a soluble form of E-selectin. Am J Pathol 151:233–243

    PubMed  CAS  Google Scholar 

  104. Kuijpers TW, Raleigh M, Kavanagh T, Janssen H, Calafat J, Roos D, Harlan JM (1994) Cytokine-activated endothelial cells internalize E-selectin into a lysosomal compartment of vesiculotubular shape. A tubulin-driven process. J Immunol 152:5060–5069

    CAS  Google Scholar 

  105. Balaram SK, Agrawal DK, Allen RT, Kuszynski CA, Edwards JD (1997) Cell adhesion molecules and insulin-like growth factor-1 in vascular disease. J Vasc Surg 25:866–876

    PubMed  CAS  Google Scholar 

  106. Morisaki N, Takahashi K, Shiina R, Zenibayashi M, Otabe M, Yoshida S, Saito Y (1994) Platelet-derived growth factor is a potent stimulator of expression of intercellular adhesion molecule-1 in human arterial smooth muscle cells. Biochem Biophys Res Commun 200:612–618

    PubMed  CAS  Google Scholar 

  107. Christofori G, Semb H (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24:73–76

    PubMed  CAS  Google Scholar 

  108. Birchmeier W, Behrens J (1994) Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198:11–26

    PubMed  CAS  Google Scholar 

  109. Bracke ME, Van Roy FM, Mareel MM (1996) The E-cadherin/catenin complex in invasion and metastasis. Curr Top Microbiol Immunol. 213:123–61

    PubMed  CAS  Google Scholar 

  110. Lee SW (1996) H-cadherin, a novel cadherin with growth inhibitory functions and diminished expression in human breast cancer. Nat Med 2:776–782

    PubMed  CAS  Google Scholar 

  111. De Wever O, Westbroek W, Verloes A, Bloemen N, Bracke M, Gespach C, Bruyneel E, Mareel M (2004) Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-{beta} or wounding. J Cell Sci 117:4691–4703

    PubMed  Google Scholar 

  112. Shimazui T, Yoshikawa K, Uemura H, Hirao Y, Saga S, Akaza H (2004) The level of cadherin-6 mRNA in peripheral blood is associated with the site of metastasis and with the subsequent occurrence of metastases in renal cell carcinoma. Cancer 101:963–968

    PubMed  CAS  Google Scholar 

  113. Shimazui T, Yoshikawa K, Uemura H, Kawamoto R, Kawai K, Uchida K, Hirao Y, Saga S, Akaza H (2003) Detection of cadherin-6 mRNA by nested RT-PCR as a potential marker for circulating cancer cells in renal cell carcinoma. Int J Oncol. 23:1049–1054

    PubMed  CAS  Google Scholar 

  114. Ozawa M, Kemler R (1990) Correct proteolytic cleavage is required for the cell adhesive function of uvomorulin. J Cell Biol 111:1645–1650

    PubMed  CAS  Google Scholar 

  115. Posthaus H, Dubois CM, Muller E (2003) Novel insights into cadherin processing by subtilisin-like convertases. FEBS Lett 536:203–208

    PubMed  CAS  Google Scholar 

  116. Tsuji A, Ikoma T, Hashimoto E, Matsuda Y (2002) Development of selectivity of alpha1-antitrypsin variant by mutagenesis in its reactive site loop against proprotein convertase. A crucial role of the P4 arginine in PACE4 inhibition. Protein Eng 15:123–130

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Siegfried, G., Chrètien, M., Khatib, AM. (2006). Proprotein Convertases in Tumorigenesis, Angiogenesis and Metastasis. In: Khatib, AM. (eds) Regulation of Carcinogenesis, Angiogenesis and Metastasis by the Proprotein Convertases (PCs). Springer, Dordrecht. https://doi.org/10.1007/1-4020-5132-8_4

Download citation

Publish with us

Policies and ethics