Skip to main content

MODELING AND SIMULATION OF ELECTRIFIED DROPLETS AND ITS APPLICATION TO COMPUTER-AIDED DESIGN OF DIGITAL MICROFLUIDICS

  • Chapter
Design Automation Methods and Tools for Microfluidics-Based Biochips

Abstract

Digital microfluidics is the second-generation lab-on-a-chip architecture based upon micromanipulation of droplets via a programmed external electric field by an individually addressable electrode array. Dielectrophoresis (DEP) and electrowetting-on-dielectric (EWOD) are of the dominant operating principles. The microfluidic mechanics of manipulating electrified droplets are complex and not entirely understood. In this article, we present a numerical simulation method based on droplet electrohydrodynamics (EHD). First we show a systematic validation study comparing the simulation solution with both analytical and experimental data, quantitatively and qualitatively, and in both steady state and transient time sequences. Such comparison exhibits excellent agreement. Simulations are then used to illustrate its application to computeraided design of both EWOD-driven and DEP-driven digital microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. http://www.tutorgig.com/ed/Digital_microfluidics.

    Google Scholar 

  2. J. Zeng and F. Korsmeyer, Principles of droplet electrohydrodynamics for lab-on-a-chip, Lab. Chip., 4, 265–277 (2004).

    Article  Google Scholar 

  3. J. R. Melcher and G. I. Taylor, Electrohydrodynamics: a review of the role of interfacial shear stresses, Annu. Rev. of Fluid Mech., 1, 111–146 (1969).

    Article  Google Scholar 

  4. D. A. Saville, Electrohydrodynamics: The Taylor-Melcher leaky-dielectric model, Annu. Rev. Fluid Mech., 29, 27–64 (1997).

    Article  MathSciNet  Google Scholar 

  5. J. R. Melcher, Continuum Electromechanics, Section 3.7 (The MIT Press, 1981).

    Google Scholar 

  6. H. Pellat and C. R. Seances, Acad. Sci., Paris, 119, 675 (1894), see: T. B. Jones and J. R. Melcher, Dynamics of electromechanical flow structures, Physics of Fluids, 16(3), 393–400 (1973).

    MATH  Google Scholar 

  7. J. Zeng, D. Sobek and F. T. Korsmeyer, Electro-hydrodynamic modeling of electrospray ionization: CAD for a μFluidic device - mass spectrometer interface, Transduers’03 Digest of Technical Papers, 1275–1278 (2003).

    Google Scholar 

  8. D. Sobek, J. Cai, H. Yin and J. Zeng, Fundamental study of Taylor cone dynamics of nano-electrosprays, 52nd American Society for Mass Spectrometry Conference (Nashville, TN, May 23–27, 2004).

    Google Scholar 

  9. J. L. Jackel, S. Hackwood and G. Beni, Electrowetting optical switch, Appl. Phys. Lett., 40(1), 4–5 (1982).

    Article  Google Scholar 

  10. H. J. J. Verheijen and M. W. J. Prins, “Contact angles and wetting velocity measured electrically”, Review of Scientific Instruments, 70(9), 3668–3673 (1999).

    Article  Google Scholar 

  11. R. Digilov, Charge-induced modification of contact angle: the secondary electrocapillary effect, Langmuir, 16, 6719–6723 (2000).

    Article  Google Scholar 

  12. C. Quilliet and B. Berge, Electrowetting: a recent outbreak, Current Opinion in Colloid & Interface Science, 6, 34 (2001).

    Article  Google Scholar 

  13. M. G. Pollack, A. D. Shenderov, R. B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics, Lab. Chip., 2, 96–101 (2002).

    Article  Google Scholar 

  14. S. K. Cho, H. Moon and C-J Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, Journal of microelectromechanical systems, 12(1), 70–80 (2003).

    Article  Google Scholar 

  15. K.-L. Wang and T. B. Jones, Electrowetting dynamics of microfluidic actuation, Langmuir, 21, 4211–4217 (2005).

    Article  Google Scholar 

  16. T. B. Jones, On the relationship of dielectrophoresis and electrowetting, Langmuir, 18, 4437–4443 (2002).

    Article  Google Scholar 

  17. H. J. J. Verheijen and M. W. J. Prins, Reversible electrowetting and trapping of charge: model and experiments, Langmuir, 15, 6616–6620 (1999).

    Article  Google Scholar 

  18. B. Shapiro, H. Moon, R. L. Garrell, C-J. Kim, Equilibrium Behavior of Sessile Drops under Surface Tension, Applied External Fields, and Material Variations, Journal of Applied Physics, 93(9), 5794–5811 (2003).

    Article  Google Scholar 

  19. A. B. Basset, A Treatise on Hydrodynamics (Cambridge University Press, 1888).

    Google Scholar 

  20. H. A. Pohl, Dielectrophoreisis: The behavior of neutral matter in nonuniform electric fields, (Cambridge University Press, Cambridge, 1978).

    Google Scholar 

  21. A. Desai, S. W. Lee and Y. C. Tai, A MEMS electrostatic particle transportation system, MEMS 1998 (1998).

    Google Scholar 

  22. X.-B. Wang, J. Vykoukal, F. F. Becker and P. R. C. Gascoyne P. R. C., Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation, Biophysical J., 74, 289–2701 (1998).

    Google Scholar 

  23. P. R. C. Gascoyne and J. Vykoukal, Particle separation by dielectrophoresis, Electrophoresis, 23, 1973–1983 (2002).

    Article  Google Scholar 

  24. J. Yang, Y. Huang, X.-B. Wang, F. F. Becker and P. R. C. Gascoyne, Differential analysis of human Leukocytes by dielectrophoretic field-flow-fractionation, Biophysical J., 78, 2680–2689 (2000).

    Google Scholar 

  25. X.-B. Wang, J. Yang, Y. Huang, J. Vykoukal, F. F. Becker and P. R. C. Gascoyne, Cell separation by dielectrophoretic field-flow-fractionation, Analytical Chemistry, 72(4), 832–839 (2000).

    Article  Google Scholar 

  26. J. Xu, L. Wu, M. Huang, W. Yang, J. Cheng, X.-B. Wang, Dielectrophoretic separation and transportation of cells and bioparticles on microfabricated chips, Micro Total Analysis Systems 2001 (2001).

    Google Scholar 

  27. F. F. Becker, X.-B. Wang, Y. Huang, R. Pethig, J. Vykoukal and P. R. C. Gascoyne, Removal of human leukaemia cells from blood using interdigitated microelectrodes, J. Phys. D: Appl. Phys., 27, 2659–2662 (1994).

    Article  Google Scholar 

  28. P. R. C. Gascoyne, X.-B. Wang, Y. Huang and F. F. Becker, Dielectrophoretic separation of cancer cells from blood, IEEE Transactions on Industry Applications, 33(3), 670–678 (1997).

    Article  Google Scholar 

  29. J. Suehiro and R. Pethig, The dielectrophoretic movement and positioning of a biological cell using a three-dimensinonal grid electrode system, J. Phys. D: Appl. Phys., 31, 3298–3305 (1998).

    Article  Google Scholar 

  30. P. R. C. Gascoyne, Physiology, Pathobiology, Technology, and Clinical Applications, E. P. Diamandis, editor 499–502 (AACC Press, New York, 2002).

    Google Scholar 

  31. J. Voldman, R. A. Braff, M. Toner, M. L. Gray and M. A. Schmidt, Holding forces of single-particle dielectrophoretic traps, Biophysical J., 80, 531–541 (2001).

    Google Scholar 

  32. T. Heida, W. L. C. Rutten and E. Marani, Dielectrophoretic trapping of dissociated fetal cortical rat neurons, IEEE Trans. Biomed. Eng., 48, 921–30 (2001).

    Article  Google Scholar 

  33. X.-B. Wang, Y. Huang, P. R. C. Gascoyne and F. F. Becker, Dielectrophoretic manipulation of particles, IEEE Transactions on Industry Applications, 33(3), 660–669 (1997).

    Article  Google Scholar 

  34. Y. Huang, X.-B. Wang, R. Holzel, F. F. Becker and P. R. C. Gascoyne, Electrorotational studies of the cytoplasmic dielectric properties of Friend murine erythroleukaemia cells, Phys. Med. Biol., 40, 1789–1806 (1995).

    Article  Google Scholar 

  35. J. Yang, Y. Huang, X. Wang, X.-B. Wang, F. F. Becker and P. R. C. Gascoyne, Dielectric properties of human Leukocyte subpopulations determined by electrorotation as a cell separation criterion, Biophysical J., 76, 3307–3314 (1999).

    Article  Google Scholar 

  36. P. R. C. Gascoyne, J. Noshari, F. F. Becker and R. Pethig, Use of dielectrophoretic collection spectra for characterizing differences between normal and cancerous cells, IEEE Transactions on Industry Applications, 30(4), 829–834 (1994).

    Article  Google Scholar 

  37. J. Vykoukal, J. Schwartz, F. F. Becker and P. R. C. Gascoyne, A programmable dielectric fluid processor for droplet-based chemistry, Micro Total Analysis Systems 2001, 72–74 (2001).

    Google Scholar 

  38. T. B. Jones and G. W. Bliss, Bubble dielectrophoresis, Journal of Applied Physics, 48(4), 1412–1417 (1977).

    Article  Google Scholar 

  39. L. Benguigui and I. J. Lin, The dielectrophoresis force, Am. J. Phys., 54(5), 447–450 (1986).

    Article  Google Scholar 

  40. X.-B. Wang, Y. Huang, F. F. Becker and P. R. C. Gascoyne, A unified theory of dielectrophoresis and traveling wave dielectrophoresis, J. Phys. D: Appl. Phys., 27, 1571–1574 (1994).

    Article  Google Scholar 

  41. X. Wang, X.-B. Wang, F. F. Becker and P. R. C. Gascoyne, A theoretical method of electrical field analysis for dielectrophoretic electrode arrays using Green’s theorem, J. Phys. D: Appl. Phys., 29,1649–1660 (1996).

    Article  Google Scholar 

  42. D. S. Clague and E. K. Wheeler, Dielectrophoretic manipulation of macromolecules: The electric field, Physical Review E., 64, 26605/1–26605/8 (2001).

    Article  Google Scholar 

  43. M. Washizu and T. B. Jones, Generalized multipolar dielectrophoretic force and electrorotational torque calculation, J. of Electrostatics, 38, 199–211 (1996).

    Article  Google Scholar 

  44. N. G. Green, A. Ramos and H. Morgan, Numerical solution of the dielectrophoretic and traveling wave forces for interdigitated electrode arrays using the finite element method, J. Electrostatics, 56, 235–254 (2002).

    Article  Google Scholar 

  45. T. J. Snyder, J. B. Schneider and J. N. Chung, Dielectrophoresis with application to boiling heat transfer in microgravity. I. Numerical analysis, J. of Applied Physics, 89(7), 4076–4083 (2001).

    Article  Google Scholar 

  46. T. Heida, W. L. C. Rutten and E. Marani, Understanding dielectrophoretic trapping of neuronal cells: modeling electric field, electrode-liquid interface and fluid flow, J. Phys. D: Appl. Phys., 35, 1592–1602 (2002).

    Article  Google Scholar 

  47. T. B. Jones, M. Gunji, M. Washizu and M. J. Feldman, Dielectrophoretic liquid actuation and nanodroplet formation, Journal of Applied Physics, 89, 1441–1448 (2001).

    Article  Google Scholar 

  48. P. G. Drazin and W. H. Reid, Hydrodynamic stability (Cambridge University Press, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Zeng, J. (2006). MODELING AND SIMULATION OF ELECTRIFIED DROPLETS AND ITS APPLICATION TO COMPUTER-AIDED DESIGN OF DIGITAL MICROFLUIDICS. In: Chakrabarty, K., Zeng, J. (eds) Design Automation Methods and Tools for Microfluidics-Based Biochips. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5123-9_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5123-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5122-7

  • Online ISBN: 978-1-4020-5123-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics