Skip to main content

PERFORMANCE CHARACTERIZATION OF A RECONFIGURABLE PLANAR ARRAY DIGITAL MICROFLUIDIC SYSTEM

  • Chapter

Abstract

This chapter describes a computational approach to designing a digital micro- fluidic system (DMFS) that can be rapidly reconfigured for new biochemical analyses. Such a “lab-on-a-chip” system for biochemical analysis, based on electrowetting or dielectrophoresis, must coordinate the motions of discrete droplets or biological cells using a planar array of electrodes. We earlier introduced our layout-based system and demonstrated its flexibility through simulation, including the system’s ability to perform multiple assays simultaneously. Since array layout design and droplet routing strategies are closely related in such a digital microfluidic system, our goal is to provide designers with algorithms that enable rapid simulation and control of these DMFS devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. S. Akella and S. Hutchinson. Coordinating the motions of multiple robots with specified trajectories. In IEEE International Conference on Robotics and Automation, pages 624–631, Washington, DC, May 2002.

    Google Scholar 

  2. D. P. Bertsekas and R. G. Gallagher. Data Networks. Prentice-Hall, Englewood Cliffs, N.J., second edition, 1992.

    MATH  Google Scholar 

  3. A. Bicchi and L. Pallottino. On optimal cooperative conflict resolution for air traffic management systems. IEEE Transactions on Intelligent Transportation Systems, 1(4):221–231, Dec. 2000.

    Article  Google Scholar 

  4. K.-F. Böhringer. Optimal strategies for moving droplets in digital microfluidic systems. In Seventh International Conference on Micro Total Analysis Systems (MicroTAS ’03), pages 591–594, Squaw Valley, CA, Oct. 2003.

    Google Scholar 

  5. K. F. Böhringer. Towards optimal strategies for moving droplets in digital microfluidic systems. In IEEE International Conference on Robotics and Automation, New Orleans, LA, Apr. 2004.

    Google Scholar 

  6. J. Brassil and R. Cruz. Nonuniform traffic in the Manhattan street network. In IEEE International Conference on Communications (ICC ’91), pages 1647–1651, June 1991.

    Google Scholar 

  7. C. Busch, M. Herlihy, and R. Wattenhofer. Hard-potato routing. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC 2000), pages 278–285, Portland, Oregon, May 2000.

    Google Scholar 

  8. S. K. Cho, H. Moon, and C.-J. Kim. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 12(1):70–80, Feb. 2003.

    Article  Google Scholar 

  9. A. K. Choudhury and V. O. K. Li. An approximate analysis of the performance of deflection routing in regular networks. IEEE Journal on Selected Areas in Communications, 11(8):1302–1316, Oct. 1993.

    Article  Google Scholar 

  10. A. A. Desrochers. Modeling and Control of Automated Manufacturing Systems. IEEE Computer Society, Washington, DC, 1990.

    Google Scholar 

  11. J. Ding, K. Chakrabarty, and R. B. Fair. Scheduling of microfluidic operations for reconfigurable two-dimensional electrowetting arrays. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20(12):1463–1468, Dec. 2001.

    Article  Google Scholar 

  12. D. Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction. In Proc. 12th Symp. Discrete Algorithms, pages 329–337. ACM and SIAM, January 2001.

    Google Scholar 

  13. M. Erdmann and T. Lozano-Perez. On multiple moving objects. Algorithmica, 2(4):477–521, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. B. Fair, V. Srinivasan, H. Ren, P. Paik, V. Pamula, and M. G. Pollack. Electrowetting based on-chip sample processing for integrated microfluidics. In IEEE International Electron Devices Meeting (IEDM), 2003.

    Google Scholar 

  15. S.-K. Fan, C. Hashi, and C.-J. Kim. Manipulation of multiple droplets on NxM grid by cross-reference EWOD driving scheme and pressure-contact packaging. In IEEE Conference on MEMS, pages 694–697, Kyoto, Japan, Jan. 2003.

    Google Scholar 

  16. A. Fuchs, N. Manaresi, D. Freida, L. Altomare, C. L. Villiers, G. Medoro, A. Romani, I. Chartier, C. Bory, M. Tartagni, P. N. Marche, F. Chatelain, and R. Guerrieri. A microelectronic chip opens new fields in rare cell population analysis and individual cell biology. In Seventh International Conference on Micro Total Analysis Systems (MicroTAS ’03), pages 911–914, Squaw Valley, CA, Oct. 2003.

    Google Scholar 

  17. J. Gong, S.-K. Fan, and C.-J. Kim. Portable digital microfluidics platform with active but disposable lab-on-chip. In Tech. Digest of 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS’04), pages 355–358, Maastricht, The Netherlands, Jan. 2004.

    Chapter  Google Scholar 

  18. E. Griffith and S. Akella. Coordinating multiple droplets in planar array digital microfluidics systems. In M. Erdmann, D. Hsu, M. Overmars, and A. F. van der Stappen, editors, Algorithmic Foundations of Robotics VI, pages 219–234. Springer-Verlag, Berlin, 2005.

    Chapter  Google Scholar 

  19. E. J. Griffith and S. Akella. Coordinating multiple droplets in planar array digital micro fluidic systems. International Journal of Robotics Research, 24(11):933–949, Nov. 2005.

    Google Scholar 

  20. D. Gross and C. M. Harris. Fundamentals of Queueing Theory. Wiley, New York, third edition, 1998.

    MATH  Google Scholar 

  21. J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity of motion planning for multiple independent objects: PSPACE-hardness of the “warehouseman’s problem”. International Journal of Robotics Research, 3(4):76–88, 1984.

    Google Scholar 

  22. T. B. Jones, M. Gunji, M.Washizu, and M. J. Feldman. Dielectrophoretic liquid actuation and nanodroplet formation. Journal of Applied Physics, 89:1441–1448, Jan. 2001.

    Article  Google Scholar 

  23. F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49:237–252, 1998.

    Article  MATH  Google Scholar 

  24. S. M. LaValle and S. A. Hutchinson. Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation, 14(6):912–925, Dec. 1998.

    Article  Google Scholar 

  25. M. A. Lawley. Deadlock avoidance for production systems with flexible routing. IEEE Transactions on Robotics and Automation, 15(3):497–509, June 1999.

    Article  Google Scholar 

  26. N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, and R. Guerrieri. A CMOS chip for individual cell manipulation and detection. IEEE Journal of Solid-State Circuits, 38(12):2297–2305, Dec. 2003.

    Article  Google Scholar 

  27. C. Maxfield. The DesignWarrior’s Guide to FPGAs: Devices, Tools, and Flows. Elsevier, Burlington, MA, 2004.

    Google Scholar 

  28. P. A. O’Donnell and T. Lozano-Perez. Deadlock-free and collision-free coordination of two robot manipulators. In IEEE International Conference on Robotics and Automation, pages 484–489, Scottsdale, AZ, May 1989.

    Google Scholar 

  29. P. Paik, V. K. Pamula, and R. B. Fair. Rapid droplet mixers for digital microfluidic systems. Lab on a Chip, 3:253–259, 2003.

    Article  Google Scholar 

  30. J. Peng and S. Akella. Coordinating multiple robots with kinodynamic constraints along specified paths. International Journal of Robotics Research, 24(4):295–310, Apr. 2005.

    Article  Google Scholar 

  31. M. G. Pollack, R. B. Fair, and A. D. Shenderov. Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters, 77:1725–1726, 2000.

    Article  Google Scholar 

  32. M. G. Pollack, P. Y. Paik, A. D. Shenderov, V. K. Pamula, F. S. Dietrich, and R. B. Fair. Investigation of electrowetting-based microfluidics for real-time PCR applications. In Seventh International Conference on Miniaturized Chemical and Biochemical Analysis Systems (MicroTAS ’03), pages 619–622, Squaw Valley, CA, Oct. 2003.

    Google Scholar 

  33. S. A. Reveliotis, M. A. Lawley, and P. M. Ferreira. Polynomial-complexity deadlock avoidance policies for sequential resource allocation systems. IEEE Transactions on Automatic Control, 42(10):1344–1357, Oct. 1997.

    Article  MathSciNet  Google Scholar 

  34. A. A. Rizzi, J. Gowdy, and R. L. Hollis. Distributed coordination in modular precision assembly systems. International Journal of Robotics Research, 20(10):819–838, Oct. 2001.

    Google Scholar 

  35. G. Sanchez and J. Latombe. On delaying collision checking in PRM planning—application to multi-robot coordination. International Journal of Robotics Research, 21(1):5–26, Jan. 2002.

    Article  Google Scholar 

  36. T. Schouwenaars, B. De Moor, E. Feron, and J. How. Mixed integer programming for multi-vehicle path planning. In European Control Conference 2001, pages 2603–2608, Porto, Portugal, 2001.

    Google Scholar 

  37. T. Simeon, S. Leroy, and J.-P. Laumond. Path coordination for multiple mobile robots: A resolution-complete algorithm. IEEE Transactions on Robotics and Automation, 18(1):42–49, Feb. 2002.

    Article  Google Scholar 

  38. S. S. Skiena. The Algorithm Design Manual. Springer-Verlag, New York, 1998.

    MATH  Google Scholar 

  39. V. Srinivasan, V. Pamula, M. Pollack, and R. Fair. A digital microfluidic biosensor for multianalyte detection. In IEEE 16th Annual International Conference on Micro Electro Mechanical Systems, pages 327–330, 2003.

    Google Scholar 

  40. V. Srinivasan, V. K. Pamula, and R. B. Fair. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip, 4:310–315, 2004.

    Article  Google Scholar 

  41. F. Su and K. Chakrabarty. Architectural-level synthesis of digital microfluidics-based biochips. In Proc. IEEE International Conference on CAD, pages 223–228, 2004.

    Google Scholar 

  42. A. S. Tanenbaum. Computer Networks. Prentice Hall, Upper Saddle River, NJ, third edition, 1996.

    MATH  Google Scholar 

  43. C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic management: A study in multi-agent hybrid systems. IEEE Transactions on Automatic Control, 43(4):509–521, Apr. 1998.

    Article  MathSciNet  Google Scholar 

  44. P. Švestka and M. Overmars. Coordinated path planning for multiple robots. Robotics and Autonomous Systems, 23(3):125–152, Apr. 1998.

    Article  Google Scholar 

  45. D. B.West. Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ, second edition, 2001.

    MATH  Google Scholar 

  46. A. R. Wheeler, H. Moon, C.-J. C. Kim, J. A. Loo, and R. L. Garrell. Electrowettingbased microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ ionization mass spectrometry. Analytical Chemistry, 76(16):4833–4838, Aug. 2004.

    Article  Google Scholar 

  47. T. Zhang, K. Chakrabarty, and R. B. Fair. Microelectrofluidic Systems: Modeling and Simulation. CRC Press, Boca Raton, Florida, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Griffth, E.J., Akella, S., Goldberg, M.K. (2006). PERFORMANCE CHARACTERIZATION OF A RECONFIGURABLE PLANAR ARRAY DIGITAL MICROFLUIDIC SYSTEM. In: Chakrabarty, K., Zeng, J. (eds) Design Automation Methods and Tools for Microfluidics-Based Biochips. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5123-9_13

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5123-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5122-7

  • Online ISBN: 978-1-4020-5123-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics