Skip to main content

MODELING AND CONTROLLING PARALLEL TASKS IN DROPLET-BASED MICROFLUIDIC SYSTEMS

  • Chapter
Design Automation Methods and Tools for Microfluidics-Based Biochips

Abstract

This paper presents general, hardware-independent models and algorithms to automate the operation of droplet-based microfluidic systems. In these systems, discrete liquid volumes of typically less than 1μl are transported across a planar array by dielectrophoretic or electrowetting effects for biochemical analysis. Unlike in systems based on continuous flow through channels, valves, and pumps, the droplet paths can be reconfigured on demand and even in real time. We develop algorithms that generate efficient sequences of control signals for moving one or many droplets from start to goal positions, subject to constraints such as specific features and obstacles on the array surface or limitations in the control circuitry. In addition, an approach towards automatic mapping of a biochemical analysis task onto a droplet-based microfluidic system is investigated. Achieving optimality in these algorithms can be prohibitive for large-scale configurations because of the high asymptotic complexity of coordinating multiple moving droplets. Instead, our algorithms achieve a compromise between high run-time efficiency and a more limited, non-global optimality in the generated control sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Kovacs, G.T.A., Micromachined Transducers Sourcebook. 1998: McGraw-Hill.

    Google Scholar 

  2. Stone, H.A., A.D. Stroock, and A. Ajdari, Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip. Annual Review of Fluid Mechanics, 2004. 36:381–411.

    Article  MATH  Google Scholar 

  3. Moon, H., S.K. Cho, R.L. Garrell, and C.-J. Kim, Low voltage electrowetting-on dielectric. Journal of Applied Physics, 2002. 92(7):4080–4087.

    Article  Google Scholar 

  4. Fair, R.B., V. Srinivasan, H. Ren, P. Paik, V.K. Pamula, and M.G. Pollack. Electrowetting-based on-chip sample processing for integrated microfluidics, in IEEE International Electron Devices Meeting (IEDM). 2003.

    Google Scholar 

  5. Zhang, T., K. Chakrabarty, and R.B. Fair, Integrated hierarchical design of microelectrofluidic systems using SystemC. Microelectronics Journal, 2002. 33:459–470.

    Article  Google Scholar 

  6. Zhang, T., K. Chakrabarty, and R.B. Fair, Design of Reconfigurable Composite Microsystems Based on Hardware/Software Codesign Principles. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 2002. 21(8):987–995.

    Article  Google Scholar 

  7. International Conference on Miniaturized Chemical and Biochemical Analysis Systems (microTAS). Annual.

    Google Scholar 

  8. Sensors and Actuators B: Chemical. Monthly, Elsevier.

    Google Scholar 

  9. Lab on a Chip. Monthly, Royal Society of Chemistry.

    Google Scholar 

  10. Shapiro, H.M., Practical flow cytometry. 1995, New York: Wiley.

    Google Scholar 

  11. Melamed, M.R., T. Lindmo, and M.L. Mendelsohn, Flow cytometry and sorting. 1990, New York: Wiley.

    Google Scholar 

  12. Crosland-Taylor, P.J., A device for counting small particles suspended in a fluid through a tube. Nature, 1953. 171(4340):37–38.

    Article  Google Scholar 

  13. Fu, A.Y., C. Spence, A. Scherer, F.H. Arnold, and S.R. Quake, A microfabricated fluorescence-activated cell sorter. Nature Biotechnology, 1999. 17(11):1109–1111.

    Article  Google Scholar 

  14. Krueger, J., K. Singh, A. O’Neill, C. Jackson, A. Morrison, and P. O’Brien, Development of a microfluidic device for fluorescence activated cell sorting. Journal of Micromechanics and Microengineering, 2002. 12:486–494.

    Article  Google Scholar 

  15. Tartagni, M., L. Altomare, R. Guerrieri, A. Fuchs, N. Manaresi, G. Medoro, and R. Thewes, Microelectronic Chips for Molecular and Cell Biology, in Sensors Update, H. Baltes, G.K. Fedder, and J.G. Korvink, Editors. 2004, Wiley-VCH. p. 156–200.

    Google Scholar 

  16. Beni, G. and M.A. Tenan, Dynamics of electrowetting displays. Applied Physics, 1981. 52(10):6011–6015.

    Article  Google Scholar 

  17. Pollack, M.G., R.B. Fair, and A.D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters, 2000. 77(11):1725–1726.

    Article  Google Scholar 

  18. Jones, T.B., M. Gunji, M. Washizu, and M.J. Feldman, Dielectrophoretic liquid actuation and nanodroplet formation. Journal of Applied Physics, 2001. 89(2):1441–1448.

    Article  Google Scholar 

  19. Nanolytics, www.nanolytics.com.

    Google Scholar 

  20. Wixforth, A., Verfahren und Vorrichtung zur Manipulation kleiner Flüssigkeitsmengen auf Oberflächen, German Trademark and Patent Office. 2002, Advalytix AG, 85649 Brunnthal, DE: Germany.

    Google Scholar 

  21. Wixforth, A. and C. Gauer, Mischvorrichtung und Mischverfahren für die Durchmischung kleiner Flüssigkeitsmengen, in European Patent Office. 2004: European Union.

    Google Scholar 

  22. Wixforth, A., A. Rathgeber, C. Gauer, and J. Scriba, Vorrichtung und Verfahren zur Vermessung kleiner Flüssigkeitsmengen und/oder deren Bewegung, German Trademark and Patent Office. 2002, Advalytix AG, 80799 München, DE: Germany.

    Google Scholar 

  23. Kataoka, D.E. and S.M. Troian, Patterning Liquid Flow at the Microscopic Scale. Nature, 1999. 402(6763):794–797.

    Article  Google Scholar 

  24. Darhuber, A.A., J.P. Valentino, J.M. Davis, S.M. Troian, and S. Wagner, Microfluidic actuation by modulation of surface stresses. Applied Physics Letters, 2003. 82(4):657–659.

    Article  Google Scholar 

  25. Gallardo, B.S., V.K. Gupta, F.D. Eagerton, L.I. Jong, V.S. Craig, R.R. Shah, and N.L. Abbott, Electrochemical principles for active control of liquids on submillimeter scales. Science, 1999. 283(5398):57–60.

    Article  Google Scholar 

  26. Lahann, J., S. Mitragotri, T.-N. Tran, H. Kaido, J. Sundaram, I.S. Choi, S. Hoffer, G.A. So-morjai, and R. Langer, A Reversibly Switching Surface. Science, 2003. 299(5605):371–374.

    Article  Google Scholar 

  27. Chaudhury, M.K. and G.M. Whitesides, How to make water run uphill? Science, 1992. 256(5063):1539–1541.

    Article  Google Scholar 

  28. Daniel, S., S. Sircar, J. Gliem, and M.K. Chaudhury, Ratcheting Motion of Liquid Drops on Gradient Surfaces. Langmuir, 2004. 20(10):4085–4092.

    Article  Google Scholar 

  29. Sandre, O., L. Gorre-Talini, A. Adjari, J. Prost, and P. Silberzan, Moving droplets on asymmetrically structured surfaces. Physical Review E, 1999. 60(3):2964–2972.

    Article  Google Scholar 

  30. Shastry, A., M. Case, and K.F. Böhringer. Engineering Surface Texture to Manipulate Droplets in Microfluidic Systems, in IEEE Conference on Micro Electro Mechanical Systems (MEMS). 2005. Miami Beach, FL.

    Google Scholar 

  31. Jones, T.B., J.D. Fowler, Y.S. Chang, and C.-J. Kim, Frequency-Based Relationship of Electrowetting and Dielectrophoretic Liquid Microactuation. Langmuir, 2003. 19(18):7646–7651.

    Article  Google Scholar 

  32. Zheng, J. and T. Korsmeyer, Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab on a Chip, 2004. 4:265–277.

    Article  MATH  Google Scholar 

  33. Gascoyne, P.R.C., www.dielectrophoresis.org.

    Google Scholar 

  34. Fuchs, A., N. Manaresi, D. Freida, L. Altomare, C.L. Villiers, G. Medoro, A. Romani, I. Chartier, C. Bory, M. Tartagni, P.N. Marche, F. Chatelain, and R. Guerrie. A Microelectronic Chip Opens New Fields in Rare Cell Population Analysis and Individual Cell Biology, in Micro Total Analysis Systems (MicroTAS). 2003. Squaw Valley, CA.

    Google Scholar 

  35. Paik, P., V.K. Pamula, and R.B. Fair, Rapid droplet mixers for digital microfluidic systems. Lab on a Chip, 2003. 4:253–259.

    Article  Google Scholar 

  36. Cho, S.K., H. Moon, and C.-J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 2003. 12(1):70–80.

    Article  Google Scholar 

  37. Griffith, E. and S. Akella. Coordinating multiple droplets in planar array digital microfluidics systems, in Sixth Workshop on the Algorithmic Foundations of Robotics. 2004. Utrecht, Zeist, The Netherlands.

    Google Scholar 

  38. Peng, J. and S. Akella. Coordinating Multiple Robots with Kinodynamic Constraints along Specified Paths, in Workshop on the Algorithmic Foundations of Robotics (WAFR). 2002.

    Google Scholar 

  39. Akella, S. and S. Hutchinson. Coordinating the Motions of Multiple Robots with Specified Trajectories, in IEEE International Conference on Robotics and Automation. 2002. Washington D.C.

    Google Scholar 

  40. Ding, J., K. Chakrabarty, and R.B. Fair, Scheduling of Microfluidic Operations for Reconfigurable Two-Dimensional Electrowetting Arrays. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 2001. 20(12):1463–1468.

    Article  Google Scholar 

  41. Erdmann, M. and T. Lozano-Pérez, On Multiple Moving Objects. Algorithmica, 1987. 2(4):477–521.

    Article  MATH  MathSciNet  Google Scholar 

  42. Böhringer, K.F. Optimal Strategies for Moving Droplets in Digital Microfluidic Systems, in Seventh International Conference on Miniaturized Chemical and Biochemical Analysis Systems (MicroTAS′03). 2003. Squaw Valley, CA.

    Google Scholar 

  43. Böhringer, K.F. Towards Optimal Strategies for Moving Droplets in Digital Microfluidic Systems, in IEEE International Conference on Robotics and Automation (ICRA). 2004. New Orleans, LA.

    Google Scholar 

  44. Fan, S.-K., P.-P.d. Guzman, and C.-J. Kim. EWOD Driving of Droplet on NxM Grid Using Single Layer Electrode Patterns, in Solid-State Sensor, Actuator, and Microsystems Workshop. 2002. Hilton Head Island, SC.

    Google Scholar 

  45. Fan, S.-K., C. Hashi, and C.-J. Kim. Manipulation of multiple droplets on NxM grid by cross-reference EWOD driving scheme and pressure contact packaging, in IEEE International Conference on Microelectromechanical Systems. 2003. Kyoto, Japan.

    Google Scholar 

  46. Lozano-Pérez, T., Spatial planning: A configuration space approach. IEEE Transactions on Computers, 1983. C-32(2):108–120.

    Google Scholar 

  47. Nilsson, N.J., Principles of Artificial Intelligence. 1982, Berlin Heidelberg New York: Springer Verlag.

    Google Scholar 

  48. Aho, A.V., J.E. Hopcroft, and J.D. Ullman, Data Structures and Algorithms. 2 ed. 1987, Reading, WA: Addison-Wesley.

    MATH  Google Scholar 

  49. Su, F. and K. Chakrabarty. Design of fault-tolerant and dynamically-reconfigurable microfluidic biochips, in Design, Automation and Test in Europe (DATE). 2005.

    Google Scholar 

  50. Su, F. and K. Chakrabarty. Architectural-level synthesis of digital microfluidics-based biochips, in IEEE International Conference on Computer Aided Design. 2004.

    Google Scholar 

  51. Srinivasan, V., V.K. Pamula, M.G. Pollack, and R.B. Fair. Clinical Diagnostics on Human Whole Blood, Plasma, Serum, Urin, Saliva, Sweat, and Tears on a Digital Microfluidic Platform, in Micro Total Analysis Systems (MicroTAS). 2003. Squaw Valley, CA.

    Google Scholar 

  52. Christofides, N. Worst-case analysis of a new heuristic for the traveling salesman problem, in Symposium on New Directions and Recent Results in Algorithms and Complexity. 1976. Orlando, FL: Academic Press.

    Google Scholar 

  53. Arora, S., Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and Other Geometric Problems. Journal of the ACM, 1998. 45(5):753–782.

    Article  MATH  MathSciNet  Google Scholar 

  54. Abrams, A. and R. Ghrist, State Complexes for Metamorphic Robots. The International Journal of Robotics Research, 2004. 23(7-8):811–826.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Böhringer, K.F. (2006). MODELING AND CONTROLLING PARALLEL TASKS IN DROPLET-BASED MICROFLUIDIC SYSTEMS. In: Chakrabarty, K., Zeng, J. (eds) Design Automation Methods and Tools for Microfluidics-Based Biochips. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5123-9_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5123-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5122-7

  • Online ISBN: 978-1-4020-5123-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics