Skip to main content

MICROFLUIDICS-BASED BIOCHIPS: TECHNOLOGY ISSUES, IMPLEMENTATION PLATFORMS, AND DESIGN AUTOMATION CHALLENGES

  • Chapter
Design Automation Methods and Tools for Microfluidics-Based Biochips

Abstract

Microfluidics-based biochips are soon expected to revolutionize clinical diagnosis, DNA sequencing, and other laboratory procedures involving molecular biology. In contrast to continuous-flow systems that rely on permanently-etched microchannels, micropumps, and microvalves, digital microfluidics offers a scalable system architecture and dynamic reconfigurability; groups of unit cells in a microfluidics array can be reconfigured to change their functionality during the concurrent execution of a set of bioassays. As more bioassays are executed concurrently on a biochip, system integration and design complexity are expected to increase dramatically. We present an overview of an integrated system-level design methodology that attempts to address key issues in the synthesis, testing and reconfiguration of digital microfluidics-based biochips. Different actuation mechanisms for microfluidics-based biochips, and associated design automation trends and challenges are also discussed. The proposed top-down design automation approach is expected to relieve biochip users from the burden of manual optimization of bioassays, time-consuming hardware design, and costly testing and maintenance procedures, and it will facilitate the integration of fluidic components with microelectronic component in nextgeneration SOCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo and D. T. Burke, “An integrated nanoliter DNA analysis device”, Science, vol. 282, pp. 484–487, 1998.

    Article  Google Scholar 

  2. T. Zhang, K. Chakrabarty and R. B. Fair, Microelectrofluidic Systems: Modeling and Simulation, CRC Press, Boca Raton, FL, 2002.

    Google Scholar 

  3. T. Thorsen, S. Maerkl and S. Quake, “Microfluidic large-scale integration”, Science, vol. 298, pp. 580–584, 2002.

    Article  Google Scholar 

  4. E. Verpoorte and N. F. De Rooij, “Microfluidics meets MEMS”, Proceedings of the IEEE, vol. 91, pp. 930–953, 2003.

    Article  Google Scholar 

  5. T. H. Schulte, R. L. Bardell and B. H. Weigl “Microfluidic technologies in clinical diagnostics”, Clinica Chimica Acta, vol. 321, pp. 1–10, 2002.

    Article  Google Scholar 

  6. V. Srinivasan, V. K. Pamula, and R. B. Fair, “An integrated digital microfluidic lab-on-a- chip for clinical diagnostics on human physiological fluids,” Lab on a Chip, pp. 310–315, 2004.

    Google Scholar 

  7. H. F. Hull, R. Danila and K. Ehresmann, “Smallpox and bioterrorism: Public-health responses”, Journal of Laboratory and Clinical Medicine, vol. 142, pp. 221–228, 2003.

    Article  Google Scholar 

  8. S. Venkatesh and Z. A. Memish, “Bioterrorism: a new challenge for public health”, International Journal of Antimicrobial Agents, vol. 21, pp. 200–206, 2003.

    Article  Google Scholar 

  9. M. G. Pollack, R. B. Fair and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications”, Applied Physics Letters, vol. 77, pp. 1725–1726, 2000.

    Article  Google Scholar 

  10. S. K. Cho, S. K. Fan, H. Moon, and C. J Kim, “Toward digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation”, Proc. IEEE MEMS Conf., pp. 32–52. 2002.

    Google Scholar 

  11. International Technology Roadmap for Semiconductors (ITRS), http://public.itrs.- net/Files/2003ITRS/Home2003.htm.

    Google Scholar 

  12. Affymetrix GeneChip®, http://www.affymetrix.com

    Google Scholar 

  13. Infineon Electronic DNA Chip, http://www.infineon.com

    Google Scholar 

  14. Nanogen NanoChip®, http://www.nanogen.com

    Google Scholar 

  15. S. Mutlu, F. Svec, C. H. Mastrangelo, J. M. J. Frechet and Y. B. Gianchandani, “Enhanced electro-osmosis pumping with liquid bridge and field effect flow rectification”, Proc. IEEE MEMS Conf., pp. 850–853, 2004.

    Google Scholar 

  16. B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales,” Science, vol. 283, pp. 57–60, 1999.

    Article  Google Scholar 

  17. K. Ichimura, S. Oh, and M. Nakagawa, “Light-driven motion ofliquids on a photoresponsive surface,” Science, vol. 288, pp. 1624–1626, 2000.

    Article  Google Scholar 

  18. T. S. Sammarco and M. A. Burns, “Thermocapillary pumping of discrete droplets in microfabricated analysis devices,” AI Che J., vol. 45, 350–366, 1999.

    Google Scholar 

  19. G. N. Somero, “Proteins and temperature”, Annual Review of Physiology, vol. 57, pp. 43–68, 1995.

    Article  Google Scholar 

  20. Wixforth and J. Scriba, “Nanopumps for programmable biochips”, http://www.advalytix.de

    Google Scholar 

  21. M. Washizu, “Electrostatic actuation of liquid droplets for microreactor applications,” IEEE Trans. Ind. Appl., vol. 34, pp. 732–737, 1998.

    Article  Google Scholar 

  22. T. B. Jones, M. Gunji, M. Washizu and M. J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation,” J. Appl. Phys., vol. 89, pp. 1441–1448, 2001.

    Article  Google Scholar 

  23. J. Vykoukal et al., “A programmable dielectric fluid processor for droplet-based chemistry”, Micro Total Analysis Systems 2001, 72–74, 2001.

    Google Scholar 

  24. A DEP Primer, http://www.dielectrophoresis.org

    Google Scholar 

  25. T. B. Jones, K. L. Wang, and D. J. Yao, “Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis,” Langmuir, vol. 20, pp. 2813–2818, 2004.

    Article  Google Scholar 

  26. M. Pollack, Electrowetting-Based Microactuation of Droplets for Digital Microfluidics, PhD thesis, Duke University. 2001.

    Google Scholar 

  27. M. G. Pollack, A. D. Shenderov and R. B. Fair, “Electrowetting-based actuation of droplets for integrated microfluidics”, Lab on a Chip, vol. 2, pp. 96–101, 2002.

    Article  Google Scholar 

  28. V. Srinivasan, V. K. Pamula, M. G. Pollack, R. B. Fair, “A digital microfluidic biosensor for multianalyte detection”, Proc. IEEE MEMS Conf., pp. 327–330, 2003.

    Google Scholar 

  29. V. Srinivasan, V. K. Pamula, M. G. Pollack, and R. B. Fair, “Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform”, Proc. μTAS, pp. 1287–1290, 2003.

    Google Scholar 

  30. V. Srinivasan, “A Digital Microfluidic Lab-on-a-Chip for Clinical Diagnostic Applications”, PhD Thesis, Duke University, 2005.

    Google Scholar 

  31. S. Senturia, “Microfabricated structures for the measurement of mechanical properties and adhesion of thin films”, Proc. Int. Conf. Sold-State Sensors and Actuators (Transducers), pp. 11–16, 1987.

    Google Scholar 

  32. G. K. Fedder and Q. Jing, “A hierarchical circuit-level design methodology for microelectromechinal system”, IEEE Trans. Circuits and Systems II, vol. 46, pp.1309–1315, 1999.

    Article  Google Scholar 

  33. S. K. De and N. R Aluru, “Physical and reduced-order dynamic analysis of MEMS”, Proc. IEEE/ACM Int. Conf. Computer Aided Design, pp. 270–273, 2003.

    Google Scholar 

  34. T. Mukherjee and G. K. Fedder, “Design methodology for mixed-domain systems-on-a chip [MEMS design]”, Proc. IEEE VLSI System Level Design, pp. 96 – 101, 1998.

    Google Scholar 

  35. B. Kahng, I. Mandoiu, S. Reda, X. Xu, and A.Z. Zelikovsky, “Evaluation of placement techniques for DNA probe array layout”, Proc. IEEE/ACM Int. Conf. Computer Aided Design, pp. 262–269, 2003.

    Google Scholar 

  36. N. Chatterjee and N.R. Aluru, “Combined circuit/device modeling and simulation of integrated microfluidic systems”, Journal of Microelectromechanical Systems, vol. 14, pp. 81–95, 2005.

    Article  Google Scholar 

  37. B. Shapiro, H. Moon, R. Garrell, and C. J. Kim, “Modeling of electrowetted surface tension for addressable microfluidic systems: dominant physical effects, material dependences, and limiting phenomena” Proc. IEEE Conf. MEMS, pp. 201– 205, 2003.

    Google Scholar 

  38. J. Zeng and F. T. Korsmeyer, “Principles of droplet electrohydrodynamics for lab-on-a-chip”, Lab on a Chip, vol. 4, pp. 265–277, 2004.

    Article  Google Scholar 

  39. CoventorWareTM, http://www.coventor.com.

    Google Scholar 

  40. F. Su and K. Chakrabarty, “Architectural-level synthesis of digital microfluidics-based biochips”, Proc. IEEE International Conference on CAD, pp. 223–228, 2004.

    Google Scholar 

  41. F. Su and K. Chakrabarty, “Design of fault-tolerant and dynamically-reconfigurable microfluidic biochips”, accepted for publication in Proc. Design, Automation and Test in Europe (DATE) Conference, 2005.

    Google Scholar 

  42. F. Su, S. Ozev and K. Chakrabarty, “Test planning and test resource optimization for droplet-based microfluidic systems”, Proc. European Test Symposium, pp. 72–77, 2004.

    Google Scholar 

  43. F. Su, S. Ozev and K. Chakrabarty, “Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays”, Proc. IEEE International Test Conference, pp. 883–892, 2004.

    Google Scholar 

  44. G. De Micheli, Synthesis and optimization of digital circuits. New York: McGraw-Hill, 1994.

    Google Scholar 

  45. R. Camposano, “Behavioral synthesis”, Proc. IEEE/ACM Design Automation Conference, pp. 33–34, 1996.

    Google Scholar 

  46. Kolpekwar and R. D. Blanton, “Development of a MEMS testing methodology”, Proc. International Test Conference, pp. 923–93, 1997.

    Google Scholar 

  47. N. Deb and R. D. Blanton, “Analysis of failure sources in surface-micromachined MEMS”, Proc. International Test Conference, pp. 739–749, 2000.

    Google Scholar 

  48. H. G. Kerkhoff, “Testing philosophy behind the micro analysis system”, Proc. SPIE: Design, Test and Microfabrication of MEMS and MOEMS, vol. 3680, pp.78–83, 1999.

    Google Scholar 

  49. H. G. Kerkhoff and H. P. A. Hendriks, “Fault modeling and fault simulation in mixed micro-fluidic microelectronic Systems”, Journal of Electronic Testing: Theory and Applications, vol. 17, pp. 427–437, 2001.

    Article  Google Scholar 

  50. H. G. Kerkhoff and M. Acar, “Testable design and testing of micro-electro-fluidic arrays”, Proc. IEEE VLSI Test Symposium, pp. 403–409, 2003.

    Google Scholar 

  51. A. Jee and F. J. Ferguson, “Carafe: An inductive fault analysis tool for CMOS VLSI circuits”, Proc. IEEE VLSI Test Symposium, pp. 92–98, 1993.

    Google Scholar 

  52. F. Su, S. Ozev and K. Chakrabarty, “Testing of droplet-based microelectrofluidic systems”, Proc. IEEE International Test Conference, pp. 1192–1200, 2003.

    Google Scholar 

  53. F. Su, S. Ozev and K. Chakrabarty, “Ensuring the operational health of droplet-based microelectrofluidic biosensor systems”, IEEE Sensors Journal, vol. 5, pp. 763–773, 2005.

    Article  Google Scholar 

  54. T. Mukherjee, “MEMS design and verification”, Proc. IEEE International Test Conference, pp. 681–690, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Su, F., Chakrabarty, K., Fair, R.B. (2006). MICROFLUIDICS-BASED BIOCHIPS: TECHNOLOGY ISSUES, IMPLEMENTATION PLATFORMS, AND DESIGN AUTOMATION CHALLENGES. In: Chakrabarty, K., Zeng, J. (eds) Design Automation Methods and Tools for Microfluidics-Based Biochips. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5123-9_1

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5123-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5122-7

  • Online ISBN: 978-1-4020-5123-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics