Skip to main content

SCINTILLATION DETECTORS FOR MEDICAL AND BIOLOGY APPLICATIONS: MATERIALS, DESIGN AND LIGHT COLLECTION CONDITIONS

  • Conference paper
  • 1885 Accesses

Part of the book series: NATO Security through Science Series ((NASTB))

Abstract

Ways for the improvement of operation characteristics are considered for the following scintillators: long LSO(Ce) pixels for positron emission tomographs; small prism-shaped CdWO4 crystals for X-ray computer tomography; large thin NaI(Tl) plates for medical gammacameras. The optimization process is based on the simulation of light collection process, which involves the choice of the crystal shape, the way of the crystal, photoreceiver coupling, and the type of the coating and reflecting surface. This surface consists of polished and rough parts, and the latter can be made with a different degree of roughness. For given sizes of pixels or prisms, the axial distribution of light output can be controlled through the roughness degree of the long face of the crystal and the reflecting face opposite to the photoreceiver. A brief review summarizes the original results and the available data on modern scintillation materials based on thin oxide film’s perspective of biological imaging. In particular, optical and luminescence characteristics were analysed of doped heavyoxide single-crystal films Lu3Al5O12 on undoped Y3Al5O12 substrate for high-resolution X-ray screens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://geant4.web.cern.ch/geant4/

    Google Scholar 

  2. F. X. Gentit, Litrani: a general purpose Monte-Carlo program simulating light propagation in isotropic or anisotropic media, Nucl. Instr. and Meth. A 486, 35–39 (2002)

    Article  CAS  Google Scholar 

  3. R. Chipaux, F. X. Gentit, Simulation of light collection in the CMS lead tungstate crystals with the program Litrani: coating and surface effects, Nucl. Instr. and Meth. A 486, 48–54 (2002)

    Article  CAS  Google Scholar 

  4. http://www.nea.fr/abs/html/nea-l525.html

    Google Scholar 

  5. M. E. Globus, B. V. Grinyov, Jong Kyung Kim, Inorganic Scintillators for Modern and Traditional Applications (Institute for Single Crystals, Kharkov, Ukraine, 2005)

    Google Scholar 

  6. S. E. Derenzo and J. K. Rilers, Monte-Carlo calculations of the optical coupling between bismuth germanate crystals and photomultiplier tubes, IEEE Trans. Nucl. Sci. NS-29(1), 191–194 (1982)

    Article  Google Scholar 

  7. C. Carrier and R. Lecomte, Theoretical modeling of light transport in rectangular parallelepipedic scintillators, Nucl. Instr. and Meth. A 292 (3), 685–692 (1990)

    Article  Google Scholar 

  8. M. E. Globus, B. V. Grinyov, Operation characteristics of ionizing radiation detectors based on inorganic and plastic scintillators for nuclear physics and medical instrumentation, IEEE Trans. Nucl. Sci. 43(3), 1287–1294 (1996)

    Article  CAS  Google Scholar 

  9. A. Saoudi and R. Lecomte, A Novel APD-Based Detector Module for Multi-Modality PET/SPECT/CT Scanners, IEEE Trans. Nucl. Sci. 46, 479–484 (1999)

    Article  Google Scholar 

  10. Ya. A. Berdnikov, V. F. Kosmach, V. M. Samsonov, A. P. Shishlo, Optimization of light collection processes in PbWO4 scintillator crystals,Tungstate Crystals. Proc. of the Intern. Workshop on Tungstate Crystals, ed. by Baccaro S. et al, Roma, Italy, 287–290 (1998)

    Google Scholar 

  11. V. P. Gavriluk, E. L. Vinograd, B. V. Grinyov, V. I. Goriletsky, Effect of surface conditions on the light collection in scintillation detectors, Functional Materials 4(4) 572–577 (1997)

    Google Scholar 

  12. A. S. Toporets, M. M. Mazurenko, Light reflection from rough surface, Zhurn. Prikl. Spektroskopii 10(3), 486–490 (1969) (in Russian)

    Google Scholar 

  13. W. W. Moses, K. S. Shah, Potential for RbGd2Br7:Ce, LaC13:Ce, LaBr3:Ce and LuI3:Ce in nuclear medical imaging, Nucl. Instr. and Meth. A 537, 317–320 (2005)

    Article  CAS  Google Scholar 

  14. C. L. Melcher, Perspectives on the future development of new scintillators, Nucl. Instr. and Meth. A 537, 6–14 (2005)

    Article  CAS  Google Scholar 

  15. S. E. Derenzo, M. J. Weber, E. Bourret-Courchesne, M. K. Klintenberg, The quest for the ideal inorganic scintillator, Nucl. Instr. and Meth. A 505, 111–117 (2003)

    Article  CAS  Google Scholar 

  16. M. Korzhik, P. Lecoq, Search of New Scintillation Materials for Nuclear Medicine Applications, IEEE Trans. Nucl. Sci. 48(3), 628–631 (2001)

    Article  CAS  Google Scholar 

  17. C. L. Melcher, US Patent 4,958,080(1990) and 5,025,151 (1991)

    Google Scholar 

  18. B. I. Minkov, Promising new lutetium based single crystals for fast scintillators, Functional Materials 1(1), 103–105 (1994)

    Google Scholar 

  19. M. Schmand, L. Eriksson, M. Cassey, et al, Performance results of a new DOI detector block for a high resolution PET-LSO research tomograph HRRT, IEEE Trans.Nucl. Sci. NS45, 3000–3006 (1998)

    Article  Google Scholar 

  20. H. W. A. M. de Jong, R. Boellaard, M. Lenox et al. Correction for Emission Contamination in Transmission Scans for the High Resolution Research Tomograph, IEEE Trans. Nucl. Sci. 51(3), 673–676 (2004)

    Article  CAS  Google Scholar 

  21. A. R. Fremout, R. Chen, P. Bruyndonckx, S. P. K. Tavernier, Spatial Resolution and Depth-of-Interaction Studies With a PET Detector Module Composed of LSO and an APD Array, IEEE Trans. Nucl. Sci. 49 (1), 131–138 (2002)

    Article  Google Scholar 

  22. M. Schmand, M. Dahlbom, L. Eriksson, et al., Performance of LSO/NaI(Tl) phoswich detector for a combined PET/SPECT imaging system, J. Nucl. Med. 39(suppl.), 9–10 (1998)

    Google Scholar 

  23. H. Li, W. Wong, N. Zhang et al., Electronics for a Prototype Variable Field of View PET Camera Using the PMT-Quadrant-Sharing Detector Array, IEEE Trans.Nucl. Sci. 48(3), 546–550 (1999)

    Article  Google Scholar 

  24. M. Dahlbom, L. MacDonald, M. Schmand, et al., A YSO/LSO phoswich array detector single and coincidence photon imaging, IEEE Trans. Nucl. Sci., 45(3), 1128–1132 (1998)

    Article  Google Scholar 

  25. G. F. Knoll, Radiation Detection and Measurement, 3rd ed., (John Wiley & Sons, Inc, New York, 2000), pp. 243, 735, 679, 691

    Google Scholar 

  26. S. Yamamoto., K. Tarutam, M. Suga, et al. Development of a Phoswich Detector for a Continuous Blood-Sampling System, IEEE Trans. Nucl. Sci. 48(4), 1408–1411 (2001)

    Article  Google Scholar 

  27. B. E. Part, I. Iwanczyk, C. R. lull, et al., Fast-Timing Silicon Photodetectors, IEEE Trans. Nucl. Sci. 47(3), 957–964 (2000)

    Article  Google Scholar 

  28. G.-C. Wang, J. S. Huber, W. W. Moses et al., Calibration of a PEM Detector With Depth of Interaction Measurement, IEEE Trans. Nucl. Sci. 51(3), 775–781 (2004)

    Article  CAS  Google Scholar 

  29. J. G. Rogers, C. Moisan, A. Altman, et al., A position sensitive detector for 1–10 MeV gamma rays, IEEE Trans. Nucl. Sci. 44 (3), 994–1000 (1997)

    Article  CAS  Google Scholar 

  30. K. Ziemons, E. Auffray, R. Barbier et al., The ClearPET project: development of a 2nd generation high-performance small animal PET scanner, Nucl. Instr. and Meth. A 537, 307–311 (2005)

    Article  CAS  Google Scholar 

  31. A. J. Soares, I. Cullum, D. J. Miller, Development of a small gamma camera using wavelength-shifting fibres coupled to inorganic scintillation arrays for imaging 140 keV gamma- rays, IEEE Trans. Nucl. Sci. 46(3), 576–582 (1999)

    Article  CAS  Google Scholar 

  32. A. Gliere, A. Koenig, F. Mathy, P. Hugonnard, A Physics –Based Model of Pixellated Semiconductor Gamma-Camera, IEEE Trans. Nucl. Sci. 48(3), 620–624 (2001)

    Article  Google Scholar 

  33. Z. He, 3-dimensional position-sensitive CdZnTe gamma-ray imaging spectrometers, Abstracts of the 3’rd iTRS International Symposium on Radiation Safety and Detection Technology, July 27–28, 2005, Taiyuan, China, p. 26

    Google Scholar 

  34. V. Komar, D. Nalivaiko, V. Migal. Nucl.Instr. and Meth. A 458, 133 (2001)

    Article  Google Scholar 

  35. T. Takahashi, S. Watanabe, Recent Progress in CdTe and CdZnTe Detectors, IEEE Trans. Nucl. Sci. 48(4), 950–956 (2001)

    Article  CAS  Google Scholar 

  36. A. V. Gektin, A. S. Gershun, B. V. Grinyov, V. R. Luybinskiy et al., One-photon emission computer tomograph-a basis of modern nuclear medicine, in: Functional materials for science and technology, edited by V. P. Seminozhenko and B.V. Grinyov (Institute for Single Crystals, Kharkov, 2001), pp. 575–589

    Google Scholar 

  37. A. Koch, C. Raven, P. Spanne, A. Snigirev, X-ray imaging with submicrometer resolution employing transparent luminescent screens, J. Opt. Soc. Am. A 15(7), 1940–1951 (1998)

    CAS  Google Scholar 

  38. A. Koch, P. Cloetens, W. Ludwig, J. Labiche, B. Ferrand, Reading thin-film scintillators with optical microscopes for X-ray imaging, in Proc. of the Fifth Intern. Conf. Inorganic Scintillators and Their Applications, Moscow, Russia, August 16–20, 157–166 (1998)

    Google Scholar 

  39. X. Badel, J. Linnros, S. Petersson, et al., Metallized and Oxidised Silicon Macropore Arrays Filled with a Scintillator for CCD-based X-ray Imaging Detectors, Abstracts of IEEE 2003 Nuclear Science Symposium and Medical Imaging Conference, Portland, USA, p. 64 (2003)

    Google Scholar 

  40. Yu. Zorenko, V. Gorbenko, I. Konstankevych, M. Pashkovsky, M. Globus et al., Scintillators on the base of single crystalline films of A12O3-Y2O3 system oxides, Proc. of the 15 th Int. Conf. on Inorganic Scintillators and Their Applications, Moscow, Russia, August 16–20, (1999), p. 476–480.

    Google Scholar 

  41. Catalogue “Scintillation Detectors”, Saint-Gobain, Crystals&Detectors, USA (1997)

    Google Scholar 

  42. Yu. Zorenko, V. Gorbenko, I. Konstankevych, B. Grinyov, M. Globus, Scintillation properties of Lu3Al5O12:Ce single-crystalline films, Nucl. Instr. and Meth. A 486, 309–314 (2002)

    Article  CAS  Google Scholar 

  43. Yu. Zorenko, I. Konstankevych, M. Globus, B. Grinyov., V. Lyubinskiy, New scintillation detectors based on oxide single crystal films for biological microtomography, Nucl. Instr. and Meth. A 505, 93–96 (2003)

    Article  CAS  Google Scholar 

  44. M. Globus, B. Grinyov, M. Ratner, V. Tarasov, V. Lyubinskiy, Yu.Vydai, A. Ananenko, Yu. Zorenko, V. Gorbenko, I. Konstankevych, New Type of Scintillation Detectors for Biological, Medical and Radiation Monitoring Applications, IEEE Trans. Nucl. Sci. 51(3), 1297–1303 (2004).

    Article  CAS  Google Scholar 

  45. Catalogue Hamamatsu, Japan (2001)

    Google Scholar 

  46. Catalogue Hamamatsu Photonics Norden AB, Sweden (1999)

    Google Scholar 

  47. C. Raven, A. Snigirev, I. Snigireva, P. Spanne et al., Phase-contrast micritomography with coherent high-energy synchrotron x-rays, Appl. Phys. Lett. 69, 1826–1828 (1996)

    Article  CAS  Google Scholar 

  48. A. Garcia-Murillo, C. Le Luyer, C. Dujardin et al., Elaboration and scintillation properties of Eu3+- doped Gd2O3 and Lu2O3 sol-gel films // Nucl. Instr. and Meth. A 486, 181–185 (2002)

    Article  CAS  Google Scholar 

  49. C. Dujardin, A. Garcia-Murillo, C. Pedrini et al., Synthesis and scintillation properties of some dense X-ray phosphors, Proc. of the 15 th Int. Conf. on Inorganic Scintillators and Their Applications, Moscow, Russia, August 16–20, (1999), p. 527–531

    Google Scholar 

  50. N. V. Guerassimova, I. A.Kamenskikh, V.V. Mikhailin et al., Fast luminescence of HfO2–Yb2O3 and ZrO2– Yb2O3 solid solutions, Nucl. Instr. Meth.Phys. Res. A 486, 234–238 (2002)

    Article  CAS  Google Scholar 

  51. M. Kirm, J. Aarik, M. Jurgens, I. Sildos, Thin films of HfO2 and ZrO2 as potential scintillators, Nucl. Instr. Meth.Phys. Res. A 537, 251–255 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Globus, M., Grinyov, B. (2006). SCINTILLATION DETECTORS FOR MEDICAL AND BIOLOGY APPLICATIONS: MATERIALS, DESIGN AND LIGHT COLLECTION CONDITIONS. In: Tavernier, S., Gektin, A., Grinyov, B., Moses, W.W. (eds) Radiation Detectors for Medical Applications. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5093-3_9

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5093-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5091-6

  • Online ISBN: 978-1-4020-5093-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics